Hacking The Invisible Network

The Risks and Vulnerabilities Associated with Wireless Hotspots

Michael Sutton <msutton@idefense.com>
Pedram Amini <pamini@idefense.com>
Purpose

• Study security from two points of view
 – Providers
 – End users

• A variety of implementations
 – Cafés
 – Hotels

• Tools
 – Laptops, Dell Axim
 – Hermes and Prism chipsets
 – Various software tools
 – Tolerant bladder
Wireless Internet Service Providers
– aka Hotspots

What are they?
• Where are they?
 – Airports
 – Hotels
 – Retail stores
 – Coffee Shops
• Why go wireless?
 – Cost
 – Convenience
Industry

• Startups
 – Boingo
 – WayPort
 – NetNearU
 – HotSpotzz
 – Airpath Wireless
 – Surf and Sip
 – HereUAre
 – Deep Blue Wireless
 – Joltage (defunct)
Industry (cont’d)

• Telecomm
 – T-Mobile
 – AT&T (Cometa)
 – Sprint (Boingo)

• Hardware
 – Intel (Cometa)
 – IBM (Cometa)
Provider Risks

• Business risks
 – Financial loss
 – Launch pad for anonymous attacks

• Network level attacks
 – Privacy
 – Confidentiality
 – Data integrity

• Denial of service attacks
 – Availability
End User Risks

- Node vs. Network level security
 - “Crunchy on the outside, Chewy on the inside”

- Untrusted networks
 - Intranet safe services
 - Information leakage
 - Spoof attacks

- End user awareness
Security Implementations

- Access control
 - Firewall restricts connectivity
 - Web requests redirected to login screen
 - Authentication takes place over SSL
 - Internet access is granted
Security Implementations (cont’d)
Security Implementations (cont’d)

• IP address filtering
 – Everyone

• MAC address filtering
 – T-Mobile

• IPSec VPN
 – Deep Blue Wireless
 – Optional

• DHCP lease expiration
 – ?
Revenue Loss

• Tunneling data through unfiltered protocols
 – Bypassing access controls

• Connection hijacking
 – Stealing legitimate connections

• Connection sharing
 – Multiple unauthorized connections piped through one legitimate connection
Tunneling

IP Traffic

Loki Server
Internet
External Sites
ICMP Traffic
Loki Client
Access Point
Firewall Gateway
IP Traffic

Copyright © 2003 iDEFENSE Inc.
Connection Hijacking

Internet Access Point
Target IP \(\rightarrow \) Y.Y.Y.Y
MAC \(\rightarrow \) Y:Y:Y:Y:Y:Y
Permitted

Attack IP \(\rightarrow \) Y.Y.Y.Y
MAC \(\rightarrow \) Y:Y:Y:Y:Y:Y
Blocked

Connection Hijacking

Internet Access Point
Target IP \(\rightarrow \) Y.Y.Y.Y
MAC \(\rightarrow \) Y:Y:Y:Y:Y:Y
Permitted

Attack IP \(\rightarrow \) X.X.X.X
MAC \(\rightarrow \) X:X:X:X:X:X
Blocked

Connection Hijacking

Internet Access Point
Target IP \(\rightarrow \) Y.Y.Y.Y
MAC \(\rightarrow \) Y:Y:Y:Y:Y:Y
Permitted

Attack IP \(\rightarrow \) Y.Y.Y.Y
MAC \(\rightarrow \) Y:Y:Y:Y:Y:Y
Permitted

Internet Access Point
Target IP \(\rightarrow \) Y.Y.Y.Y
MAC \(\rightarrow \) Y:Y:Y:Y:Y:Y
Permitted

Attack IP \(\rightarrow \) X.X.X.X
MAC \(\rightarrow \) X:X:X:X:X:X
Permitted
Connection Sharing

Share 1

Router

Access Point

Internet

Share 2
Network Level Attacks

- Traffic monitoring
 - Passive attack

- DNS Hijacking
 - Active attack
 - Man in the middle attacks
 - Auto update hijacking

- Public IP addresses
 - WayPort
 - Remote attack

- ARP Spoofing
 - Active attack
 - Network crossover
WayPort Layout

- Internet
- WayPort
- Gateway
- Access Points
- 64.134.81.168 (Linux)
- 64.134.81.169 (Windows)
- 64.134.81.129
Denial of Service Attacks

- Physical layer (1)
 - Interference
- Data layer (2)
 - ARP spoofing
- Network layer (3)
 - AirJack
End User Countermeasures

- VPN
- Encryption w/ validation
- O/S hardening
- Node level firewall/IDS
- Dedicated travel hardware
Improved WISP Security

• Non Internet addressable IPs
 – Network Address Translation (NAT)
• Filter all protocols
• 802.1x
• Intrusion Detection System (IDS)
 – Spoof detection (ARP, IP, DNS, …)
• Intrusion Prevention System (IPS)
Questions?