
Introduction to Unicornscan

Introducing Unicornscan
RIDING THE UNICORN

Unicornscan is an open source (GPL) tool designed to assist with information gathering and security auditing.
This talk will contrast the real world problems we’ve experienced using other tools and methods while

demonstrating the solutions that Unicornscan can provide.
For the latest copy of this talk go to http://www.dyadlabs.com/defcon05.pdf

Presented By:

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.

http://www.dyadlabs.com/defcon05.pdf


Introduction to Unicornscan

Outline

1 Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Speakers

Speakers:
Robert E. Lee

CEO, Dyad Labs, Inc.
Director of Projects and Resources, ISECOM
OPST & OPSA Certified Trainer

Jack C. Louis
Chief Security Researcher, Dyad Labs, Inc.
Systems Programmer
OPST & OPSA Certified Trainer

Anthony de Almeida Lopes
Intern, Dyad Labs, Inc.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

3-way Handshake Connect Picture

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Scatter Connect Picture

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Scatter Connect Explained

Move TCP connection state tracking out of kernel space and
into user space

One process is the master control (Unicornscan).
Keeps track of what packets need to be sent
Who can send them
The responses that have come back
connection state.

A second process is the sender (unisend).
Assembles the packets and puts them on the wire.
Optionally, you can split this function into Batch Sender and
Immediate Sender modes.

A third process is the listener (unilisten).
Listens for responses and sends the meta information back
to the master control.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Scatter Connect Explained - Cont

When unilisten sees the SYN/ACK packet, it sends the
meta information back to Unicornscan.

Unicornscan then requests that unisend send a ACK
packet back to the host that sent the SYN/ACK to complete
the 3-way hand-shake.

At that point, depending on what other modules or
payloads were to be used in the session, Unicornscan
would schedule the additional payloads to be sent by
unisend.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Common Port Scanning Problems

No reliable UDP scanning
UDP port scanning involves sending UDP probes with no
application/protocol specific instructions in the datagram
and counting on ICMP responses to indicate "Closed" ports
Turns out, people use firewalls
Required us to script UDP protocol clients (dig, snmpwalk,
etc) to enumerate live services through firewalls

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Common Port Scanning Problems - Cont

TCP enumeration has too many steps
Syn Scanning
Connect/banner grab scanning the "open" ports
Protocol specific stimulus (ala amap, manual testing, etc)

Networks are getting bigger
Tools not intended for testing large (65k-4billion+ IPs)
networks
Processing the output can be overwhelming

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Common Vulnerability Scanning Problems

These tools have modules that contradict each other
Remote host is running Amiga Miami OS
Remote host is running IIS 5.0 on TCP Port 80
Remote host is vulnerable to Apache Nosejob vulnerability

To be useful, the modules need to share information better

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Timing Problems

No mechanism for accurate control over the Packets Per
Second (PPS) rate

Scanrand provided a -b (bandwidth) option, but is bursty
and has lots of packet loss at relatively low speeds
Nmap’s -T option has a few problems

Normal, Aggressive, Insane, etc isn’t easily translated into
PPS ranges
Even Insane doesn’t scale to high speeds
The timing is affected by the responses received

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Mindset

Fundamental Design Goals
Scalability

Efficient use of resources (bus analogy)
Not the same as just "going faster"

Accuracy
Invalid data collection leads to invalid analysis
Tools should introduce stimulus, record response
Humans analyze

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Mindset

Flexibility
You supply the stimulus
We supply the delivery mechanism
Dynamic "just in time" decision control

Security
Implementation modeled after IDSSCPP_V1.2
We also provide a sample security policy for use with SE
Linux

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

What does it do?

Provides a distributed user space TCP/IP stack

Some key features:
Asynchronous stateless TCP/UDP port Scanning
Asynchronous stateless TCP banner grabbing
Active remote OS, application, and component collection

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

What does it do? - Cont

Some key features - Cont:
Custom static and dynamic payload module support

Protocol specific TCP/UDP stimulus & response framework
Metamorphic shellcode encoder

PCAP file logging and filtering
Relational database output

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Architecture

3 processes (NOT THREADS)
Why? - No safe way to do SoD with threads (due to the
sharing of memory).
There is no good reason to share memory

Sender (It sends packets)
Batch Sender
Immediate Sender

Listener (It Sniffs)

Master (It does everything else)

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Sequence Number Encoding

Stateless TCP scanning that can support TCP streams:
#define TCPHASHTRACK(srcip, srcport, dstport, syncookie)
((syncookie) ˆ ((srcip) ˆ ((srcport) << 16) + (dstport) )))

With something so simple we can do TCP connections
because the algorithm is NOT one way.

Without this there would be an IPC message for every
packet received.

We don’t have an entry in our state table until after we
receive a response (SYN+ACK)

Normal TCP/IP stacks would use a state table entry after
sending the initial SYN

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Internal Steps for a Syn Scan

How a Scan Works: (example, cluster mode is different,
obviously)
Simple 30 step process to running a port scan. (for a basic
SYN scan running on one host)

1 User invokes scanner via command line.
2 Scanner reads configuration file.
3 Scanner walks command line options (overriding

configuration file).
4 Master process opens shared library modules.
5 Master Process figures out that it needs to fork children.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Internal Steps for a Syn Scan

6 Master Process forks a sender process and records its
creation information.

7 Sender Process opens Unix domain socket and awaits
master connection.

8 Master thread awaits signals from both children.
9 Master connects to sender and sends an IDENT message.

10 Sender and Listener send back IDENT_SENDER and
IDENT_LISTENER message respectively.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Internal Steps for a Syn Scan

11 Master Process forks listener process and records its
creation information.

12 Listener Process opens Unix domain socket and awaits
master connection.

13 Master ACKS both messages.
14 Sender opens up configuration file and shared libraries

looking for UDP payloads.
15 Listener opens pcap interface, looks up interface

information, and attempts to drop privs.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Internal Steps for a Syn Scan

16 Sender sends back READY message to Master.
17 Listener sends back READY message with listeners

interface information included.
18 Master considers information from Listener and prepares

workunit information.
19 Master sends Listener a "sniffing" workunit, including a

pcap filter string, etc.
20 Listener gets "sniffing" workunit and responds with a

READY message after processing it.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Internal Steps for a Syn Scan

21 Listener goes into loop polling pcap and IPC file descriptor.
22 Master sends Sender a "batch" workunit containing a

‘large’ unit of work to perform.
23 Sender creates a linked list of function pointers to loop on

and goes into a batch loop.
24 Master goes into loop reading Sender and Listener file

descriptors (mostly from the listener), recording information
that it was asked to record.

25 Sender finishes work loop, and sends a WORKDONE
message back to the Master.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Internal Steps for a Syn Scan

26 Master checks if it has more work, but does not so goes
into a scan timeout state.

27 Master goes into reporting state after timeout finishes,
perhaps recording information and displaying it.

28 Master tells Sender to QUIT.
29 Master tells Listener to QUIT.
30 Master awaits the 2 SIGCHLD signals, and itself exits.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

TCP Stream Stuff

Normal stacks are designed for situations where you know
all of the Source_IP,Source_port:Dest_IP,Dest_Port
combinations that you will want to use.

Unicornscan’s stack was designed for situations where you
know the Source_IP,Source_port side, but have a large list
of Dest_IP,Dest_Port possibilities.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

TCP Stream Stuff

This is because we don’t know who we are going to
connect to, or how many things we are going to connect to.

We don’t have a fixed size table because we have _no_
idea how big its going to get

We should assume that O(log2N)’ish is better than O(1) if
we don’t have bounds (worst case)

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

State Table Math

Why?

We can only have O(1) if we know the size of our data set,
we do not. If we have fixed sized tables, we need to guess
high, even though we generally wont fill the table (we don’t
know our endpoints, once again)

Some Numbers for entire Internet on one port:

Table: 2 ˆ 32 * sizeof(key) = 4294967296 * 8 =
34,359,738,368 bytes

Or roughly 32GB

(that’s just for the index keys)

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

State Table Math

If that seems silly to you, understand that devices that do 3way
handshakes for every address and port (cellphone networks,
DDoS Protection, etc) are becoming more common. While we
will do a 3 way handshake, we will not actually transfer data on
every connection, we need to find a middle ground.

We need to be able to withstand networks that have fake
3way handshakes and ones that do not.

We need an adaptable method that only uses memory
when it needs to, without throwing away performance.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

TCP State Tracking

We use a binary tree (red-black balancing) as a good
compromise, however this is easy to change inside the code,
and in the future possibly heuristic detection can switch from a
O(1) table to a binary tree on the fly when it detects trouble.

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

TCP State Tracking

Some numbers from an overloaded state table (average out of
10, input was mostly random)

objects from (rbtree.o chtbl.o) code were linked into test
harness for measurement

(rdtsc was inlined before and after calls to measured
functions)

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

TCP State Tracking

CPU: Intel Celeron(R) M at 1.4 Ghz with 1M of L2 cache
and 32K of I/D L1 cache.

Compiler: GNU gcc 3.3.4 (CFLAGS -O2) / Binutils 2.15.92.0.2
OS: GNU/Linux 2.6.12

804a158: 0f 31 rdtsc
...
804a176: e8 65 fa ff ff call 8049be0 <chtfind>
...
804a158: 0f 31 rdtsc

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

TCP State Tracking

(65536 Items, in 73189 Slots CHT load factor of 1.12)
RB Tree insert: 2426
RB Tree search: 2068
CHT insert : 571
CHT search : 466

(65536 Items, in 4673 Slots CHT load factor of 14.02)
RB Tree insert: 2528
RB Tree search: 1950
CHT insert : 4267
CHT search : 3924

(65536 Items, in 313 Slots CHT load factor of 209.38)
RB Tree insert: 2577
Tree search: 1875
CHT insert :55294
CHT search :50769

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

TCP State Tracking - Future

Future improvements will likely include a hybrid MFU (not
MRU) table cache in front of the rbtree.

Why?
we need to avoid caching RST+ACK’s (most frequent
situation is a port to be closed, and we still need to report
this condition)

IPC is currently via Unix domain sockets or TCP sockets
(more transports can be added)

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

payloads.conf

/* pc anywhere */
udp 5632 -1 1 {

"NQ"
};

udp 5632 -1 1 {
"ST"

};

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

payloads.conf - Cont

/* Open Relay */
tcp 25 -1 1 {

"HELO FOO\r\n"
"Mail From: mailfrom@notyourdomain.com\r\n"
"Rcpt To: rcptto@notyourdomain.com\r\n"
"Data\r\n"
"Subject: Testing for Open Relay\r\n"
"\r\n"
"This is only a test\r\n"
".\r\n"
"\r\n"
"\r\n"

};

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

HTTP HEAD Request Source

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

HTTP GET Request In Action

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

All Ports Open - Nmap

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

All Ports Open - Unicornscan

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Static Payload Example

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Static Payload Example - Cont

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Fireworks

1 TCP Connect Scan
2 If port 80 syn/ack’s, perform OS detection
3 3-way handshake completes
4 Unicornscan generates a metamorphic 1st stage encoder

before encoding the OS specific stage 1 exploit payload
5 Payload sent

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Fireworks - Cont

6 If successful
Truncate Apache error log
Create a socket
Connect back to a pre-arranged address
Tell the pre-arranged address what platform it is
Ask the pre-arranged address for OS specific stage 2
mmap a memory area that is writable and executable
read from the 2nd stage server while writing
then transfer control to the 2nd stage code
Will not write to the disk

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

Recapitulation

What did I just see?
A new method for TCP state tracking (Scatter Connect)
Unicornscan is a distributed Stimulus/Response framework
(not a port scanner)

Or to quote Winhat:
If x=4 and y=8, then I just wasted your time because I rule!

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.



Introduction to Unicornscan
Scatter Connect
Unicornscan - History, Background, & Technical Details
Demo

The End

Thank you for your time.

For more information, see:
http://www.unicornscan.org

Or just write us:
Jack at dyadsecurity dot com
Robert at dyadsecurity dot com

Robert E. Lee & Jack C. Louis Introducing Unicornscan – Dyad Labs, Inc.


	Introduction to Unicornscan
	Scatter Connect
	Unicornscan - History, Background, & Technical Details
	Demo


