
Hacking Windows CE
san@nsfocus.com
san@xfocus.org

Structure Overview

• Windows CE Overview
• Windows CE Memory Management
• Windows CE Processes and Threads
• Windows CE API Address Search Technology
• The Shellcode for Windows CE
• Windows CE Buffer Overflow Demonstration
• About Decoding Shellcode
• Conclusion
• Reference

Windows CE Overview(1)

• Windows CE is a very popular embedded
operating system for PDAs and mobiles

• Windows developers can easily develop
applications for Windows CE

• Windows CE 5.0 is the latest version
• This presentation is based on Windows CE.net(4.2)
• Windows Mobile Software for Pocket PC and

Smartphone are also based on the core of
Windows CE

• By default Windows CE is in little-endian mode

Part 1/7

Windows CE Overview(2)

• ARM Architecture
– RISC
– ARMv1 - ARMv6
– ARM7, ARM9, ARM10 and ARM11
– 7 processor modes
– 37 registers
– 15 general-purpose registers are visible at any one time

• r13(sp), r14(lr)

– r15(pc) can access directly

Memory Management(1)

Part 2/7

Memory Management(2)

• Windows CE uses ROM (read only memory),
RAM (random access memory)
– The ROM in a Windows CE system is like a small

read-only hard disk
– The RAM in a Windows CE system is divided into two

areas: program memory and object store
• Windows CE is a 32-bit operating system, so it

supports 4GB virtual address space
• Upper 2GB is kernel space, used by the system for

its own data

Memory Management(3)

• Lower 2GB is user space
– 0x42000000-0x7FFFFFFF memory is used for

large memory allocations, such as memory-
mapped files

– 0x0-0x41FFFFFF memory is divided into 33
slots, each of which is 32MB

Memory Management(4)

• Slot 0 layout

Processes and Threads(1)
• Windows CE limits 32 processes being run at any one time
• Windows CE restricts each process to its own code and

data
• Every process at least has a primary thread associated with

it upon starting (even if it never explicitly created one)
• A process can created any number of additional threads

(only limited by available memory)
• Each thread belongs to a particular process (and shares the

same memory space)
• Each thread has an ID, a private stack and a set of registers

Part 3/7

Processes and Threads(2)
• When a process is loaded

– Assigned to next available slot
– DLLs loaded into the slot
– Followed by the stack and default process heap
– After this, then executed

• When a process’ thread is scheduled
– Copied from its slot into slot 0

• This is mapped back to the original slot allocated to the
process if the process becomes inactive

• Kernel, file system, windowing system all run in their own
slots

Processes and Threads(3)

• Processes allocate stack for each thread, the
default size is 64KB, depending on the link
parameter when the program is compiled
– Top 2KB used to guard against stack overflow
– Remained available for use

• Variables declared inside functions are allocated
in the stack

• Thread’s stack memory is reclaimed when it
terminates

API Address Search(1)
• Locate the loaded address of the coredll.dll

– struct KDataStruct kdata; // 0xFFFFC800: kernel data page
– 0x324 KINX_MODULES ptr to module list
– LPWSTR lpszModName; /* 0x08 Module name */
– PMODULE pMod; /* 0x04 Next module in chain */
– unsigned long e32_vbase; /* 0x7c Virtual base address of module

*/
– struct info e32_unit[LITE_EXTRA]; /* 0x8c Array of extra info units

*/
• 0x8c EXP Export table position

• PocketPC ROMs were builded with Enable Full Kernel Mode option
• We got the loaded address of the coredll.dll and its export table

position.

Part 4/7

API Address Search(2)
• Find API address via IMAGE_EXPORT_DIRECTORY

structure like Win32.
typedef struct _IMAGE_EXPORT_DIRECTORY
{

......
DWORD AddressOfFunctions; // +0x1c RVA from base of
image
DWORD AddressOfNames; // +0x20 RVA from base of
image
DWORD AddressOfNameOrdinals; // +0x24 RVA from base of
image

// +0x28
} IMAGE_EXPORT_DIRECTORY,

*PIMAGE_EXPORT_DIRECTORY;

API Address Search(3)

Export Directory

Names Ordinals Functions

0x1c

address

“KernelIoControl”

Shellcode(1)

• test.asm - the final shellcode
– get_export_section
– find_func
– function implement of the shellcode

• It will soft reset the PDA and open its
bluetooth for some IPAQs(For example,
HP1940)

Part 5/7

Shellcode(2)

• Something to attention while writing
shellcode
– LDR pseudo-instruction

• "ldr r4, =0xffffc800" => "ldr r4, [pc, #0x108]"
• "ldr r5, =0x324" => "mov r5, #0xC9, 30"

– r0-r3 used as 1st-4th parameters of API, the
other stored in the stack

Shellcode(3)

• EVC has several bugs that makes debug
difficult
– EVC will change the stack contents when the

stack releases in the end of function
– The instruction of breakpoint maybe change to

0xE6000010 in EVC sometimes
– EVC allows code modify .text segment without

error while using breakpoint. (sometimes it's
useful)

Buffer Overflow Demo(1)
• hello.cpp - the vulnerable program

– Reading data from the "binfile" of the root directory to stack
variable "buf" by fread()

– Then the stack variable "buf" will be overflowed
• ARM assembly language uses bl instruction to call

function
– "str lr, [sp, #-4]! " - the first instruction of the hello() function
– "ldmia sp!, {pc} " - the last instruction of the hello() function
– Overwriting lr register that is stored in the stack will obtain control

when the function returned

Part 6/7

Buffer Overflow Demo(2)

• The variable's memory address allocated by
program is corresponding to the loaded Slot,
both stack and heap

• The process maybe loaded into the
difference Slot at each start time, so the
base address always alters

• Slot 0 is mapped from the current process'
Slot, so its stack address is stable

Buffer Overflow Demo(3)

Buffer Overflow Demo(4)

• A failed exploit

–The PDA is frozen when the hello program
is executed
–Why? •The stack of Windows CE is small

•Buffer overflow destroyed the 2KB
guard on the top of stack boundary

Buffer Overflow Demo(5)

• A successful exploit -
exp.c
– The PDA restarts when the

hello program is executed
• The program flows to our

shellcode

About Decoding Shellcode(1)

• Why need to decode shellcode?
– The other programs maybe filter the special

characters before string buffer overflow in
some situations

– It is difficult and inconvenient to write a
shellcode without special characters by API
address search method in Windows CE

Part 7/7

About Decoding Shellcode(2)

• The newer ARM processor has Harvard
Architecture
– ARM9 core has 5 pipelines and ARM10 core

has 6 pipelines
– It separates instruction cache and data cache
– Self-modifying code is not easy to implement

About Decoding Shellcode(3)

• A successful example
– only use store(without load) to modify self-

code
– you'll get what you want after padding enough

nop instructions
– ARM10 core processor need more pad

instructions
– Seth Fogie's shellcode use this method

About Decoding Shellcode(4)

• A puzzled example
– load a encoded byte and store it after decoded
– pad instructions have no effect
– SWI does nothing except 'movs pc,lr' under

Windows CE
– On PocketPC, applications run in kernel mode.

So we can use mcr instruction to control
coprocessor to manage cache system, but it
hasn't been successful yet

Conclusion

• The codes talked above are the real-life buffer
overflow example in Windows CE

• Because of instruction cache, the decoding
shellcode is not good enough

• Internet and handset devices are growing quickly,
so threats to the PDAs and mobiles become more
and more serious

• The patch of Windows CE is more difficult and
dangerous

Reference
• [1] ARM Architecture Reference Manual

http://www.arm.com
• [2] Windows CE 4.2 Source Code

http://msdn.microsoft.com/embedded/windowsce/default.aspx
• [3] Details Emerge on the First Windows Mobile Virus

http://www.informit.com/articles/article.asp?p=337071
• [4] Pocket PC Abuse - Seth Fogie
• http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-fogie/bh-us-04-fogie-up.pdf
• [5] misc notes on the xda and windows ce

http://www.xs4all.nl/~itsme/projects/xda/
• [6] Introduction to Windows CE

http://www.cs-ipv6.lancs.ac.uk/acsp/WinCE/Slides/
• [7] Nasiry 's way

http://www.cnblogs.com/nasiry/
• [8] Programming Windows CE Second Edition - Doug Boling
• [9] Win32 Assembly Components

http://LSD-PLaNET

Thank You!

san@nsfocus.com
san@xfocus.org

