ERY DAY

n 1 oc¢cus c o m

Hacking Windows CE

san@nsfocus.com
san@xfocus.org

Structure Overview

 Windows CE Overview

* Windows CE Memory Management
 Windows CE Processes and Threads
 Windows CE API Address Search Technology
 The Shellcode for Windows CE

 Windows CE Buffer Overflow Demonstration
e About Decoding Shellcode

e Conclusion

* Reference

Windows CE Overview(1)

* Windows CE is a very popular embedded | ﬁ
operating system for PDAs and mobiles

* Windows developers can easily develop
applications for Windows CE

* Windows CE 5.0 is the latest version
 This presentation is based on Windows CE.net(4.2)

* Windows Mobile Software for Pocket PC and
Smartphone are also based on the core of
Windows CE

« By default Windows CE is in little-endian mode

Part 1/7 _
. T

Windows CE Overview(2)

 ARM Architecture
— RISC
— ARMv1 - ARMv6
— ARM7, ARM9, ARM10 and ARM11
— 7 processor modes
— 37 registers

— 15 general-purpose registers are visible at any one time
o r13(sp), r14(lr)

— r15(pc) can access directly

Memory Management(1)

Part 2/7

SSRIPPY TFTTL 0

Eemel Viraal &ddress:
FPLGE Trap brea,
EData’s tact, ete

otatic Wapped Virtual Sddress

WE exe

Ilernory rnapped files

alot 32 Process 32

Slot 3 Devwice exe

olot 2 Filesys.exe

Charrent Process

0xFFFFFFFF

O FOOO00D00

x4 000000
Ox=CZ00000a0
OxS0000000

=4 2000000
040000000
Ox=03000000
Ox=06000000
04000000
Ox=0z000000
Ox=00000000

Memory I\/Ianagement(Z)

* Windows CE uses ROM (read only memory),
RAM (random access memory)

— The ROM in a Windows CE system is like a small
read-only hard disk

— The RAM in a Windows CE system is divided into two
areas:. program memory and object store

* Windows CE is a 32-bit operating system, so it
supports 4GB virtual address space

o Upper 2GB is kernel space, used by the system for
Its own data

Memory Management(3)

o Lower 2GB Is user space

— 0x42000000-0x7FFFFFFF memory is used for
large memory allocations, such as memory-
mapped files

— 0x0-0x41FFFFFF memory is divided into 33
slots, each of which 1s 32MB

Memory Management(4)

e Slot 0 layout

DLL Virtual Mamory Allocations

ROM DLLs:RAW Data

FRAMDOLL +0verFlow R
DLL:Code+Data

General Vidual Memory Allecations

Process VirtualAlloc() calls
Thread Stack

Process heap
Thread Stack
Process Code and Data
Guard Section(64K)+ Usearkinfo

0x02000000

§580014 JUSLUNI:010|S

000010000
0x00000000

- el
L It 1
¥

Processes and Threads(l)

e Windows CE limits 32 processes being run at any one time

e Windows CE restricts each process to its own code and
data

e Every process at least has a primary thread associated with
It upon starting (even if it never explicitly created one)

e A process can created any number of additional threads
(only limited by available memory)

e Each thread belongs to a particular process (and shares the
same memory space)

e Each thread has an ID, a private stack and a set of registers

Part 3/7 =N =
. T

Processes and Threads'(2)

e \When a process Is loaded
— Assigned to next available slot
— DLLs loaded into the slot
— Followed by the stack and default process heap
— After this, then executed

e \When a process’ thread is scheduled
— Copied from its slot into slot O

e This is mapped back to the original slot allocated to the
process If the process becomes inactive

e Kernel, file system, windowing system all run in their own
slots

Processes and Threads(3)

e Processes allocate stack for each thread, the
default size 1s 64KB, depending on the link
parameter when the program is compiled

— Top 2KB used to guard against stack overflow
— Remained available for use

e Varilables declared inside functions are allocated
IN the stack

e Thread’s stack memory Is reclaimed when it
terminates

AP| Address Search(1)

» Locate the loaded address of the coredll.dll

struct KDataStruct kdata; I/l OXFFFFCB800: kernel data page S)
0x324 KINX _MODULES ptr to module list

LPWSTR IpszModName; /* 0x08 Module name */

PMODULE pMod,; /* 0x04 Next module in chain */

unsigned long €32 vbase; /* 0x7c Virtual base address of module
*/

struct info e32_unit[LITE_EXTRA]; /* 0x8c Array of extra info units
)
» 0x8c EXP Export table position

» PocketPC ROMSs were builded with Enable Full Kernel Mode option

* We got the loaded address of the coredll.dll and its export table
position.

Part 4/7

API Address Search(2)

 Find API address via II\/IAGE_EXPORT_DIRECT'ORY
structure like Win32.

typedef struct IMAGE_EXPORT DIRECTORY

i
5WORD AddressOfFunctions; /I +0x1c RVA from base of
IE)T/S%;%RD AddressOfNames; /I +0x20 RVA from base of
I:DE/{ZEDERD AddressOfNameOrdinals; // +0x24 RVA from base of

/I +0x28

} IMAGE_EXPORT_DIRECTORY,
*PIMAGE_EXPORT_DIRECTORY;

AP| Address Search(3)

Export Directory

Ox1c —_—
\ l/ v

Names Ordinals Functions

]

“KernelloControl” <—

L

Shellcode(1)

e test.asm - the final shellcode

— get_export_section ¢
— find_func
— function implement of the shellcode

o |t will soft reset the PDA and open its
bluetooth for some IPAQs(For example,
HP1940)

Part 5/7

Shellcode(2)

e Something to attention while writing
shellcode

— LDR pseudo-instruction
e "|dr r4, =0xffffc800" => "Idr r4, [pc, #0x108]"
o "ldr r5, =0x324" => "mov r5, #0xC9, 30"

— r0-r3 used as 1st-4th parameters of API, the
other stored In the stack

Shellcode(3)

 EVC has several bugs that makes debUg
difficult

— EVC will change the stack contents when the
stack releases in the end of function

— The Instruction of breakpoint maybe change to
O0xE6000010 in EVC sometimes

— EVC allows code modify .text segment without
error while using breakpoint. (sometimes it's
useful)

Buffer Overflow Demo(1)

 hello.cpp - the vulnerable program

— Reading data from the "binfile" of the root directory to stack
variable "buf" by fread()

— Then the stack variable "buf" will be overflowed

 ARM assembly language uses bl instruction to call
function
— "str Ir, [sp, #4]! " - the first instruction of the hello() function
— "ldmia sp!, {pc} " - the last instruction of the hello() function

— Overwriting Ir register that is stored in the stack will obtain control
when the function returned

Part 6/7 -
. T

http://fwww.ns 0O C U 8 cC o

Buffer Overflow Demo(2)

e The variable's memory address allocated by
program is corresponding to the loaded Slot,
both stack and heap

* The process maybe loaded into the
difference Slot at each start time, so the
base address always alters

* Slot 0 1s mapped from the current process'
Slot, so its stack address Is stable

f / w ww . ns focuws . com

Buffer Overflow Demo(3)

& hello - Microsoft eMbedded Yisual C++ [break] - [Disassembly] Ol x|
J@ File Edit “ew Insert Project Debug Tools Window Help _|51|1|
AR 2EE | e ooy D ER| 2 | [|][EcA
[Globals] [zl| (AN global membersz]| &WinMain R JJ@ #
hello [=l|POCKET PC 200]%][Win32 (WCE ARMV4) Debug |Z]|POCKET PC 2003 Device
2["ro - ooooo200 R1 - 0OODOOOO R2 - 2F3A3403 R3 - FFFFCBAC R4 - 0800885 il
| R5 - 2602FEDS R6 - 0660OAOO R7 - 2F3A3FSA R8 - FFFFC894 RY - 243DFE18
R18 = BC12BC50 R11 = 2602FEA8 R12 = 2F3A3403 Sp = 2602FC44 Lr = O1F7688C
Pc = 88811898 Psr = 6808881F
[

EX

Address: |2febc

BAB2FEIC 51 41 471 41 41 81 31 31 81 31 81 81 31 41 81 41 AAAAAAAAAAAAAARAA -
BOO2FEZC 41 41 471 41 41 81 31 41 81 81 41 81 81 41 31 41 AAAAAARAAAAAAAARAAR
BOB2FE3C 41 41 471 41 41 81 31 41 81 81 41 81 81 41 31 41 AAAAAAAAAAAAAARAAR

BOO2FE4C 5C 62 69 6E 66 69 6C 65 BB B0 00 00 2C F2 32 8F \binfile....,.2.
BOO2FESC 4C FE 02 26 68 81 83 08 @1 80 88 00 L& e
BOB2FEGC 18 B8 86 08 88 FE 02 26 94 11 61 80 5A 3F 3A 2F . . {f.&. .. .27:/ |
21: printf{""%d\n", strlen{buf}); .:J

5 26011090 E28D 0008 add re, sp, #8
26011094 EBDOOOIF bl Istrlen (26811118)] _J
26011098 E58D0220 str re, [sp, #0x220]
2601109C E59D1220 1dr r1, [sp, #0x220]
260110A0 ES9F 0020 1dr r@, [pc, #0x20]
260110a4 EBDDOO2Y bl Iprintf (2681113c)|
22: getchar({};
260110A8 EBDOOO17 bl Igetchar (2681118c) |
23: fclose(binFileH);
260110AC E59D 000D 1dr re, [sp]
260110B0 EBDOOO12 bl |fclose (268111080) | =

- N LI_I

Ready

Buffer Overflow Demo(4)

A failed exploit

Return
PAD Address NOP Shellcode

—The PDA is frozen when the hello program
IS executed

—Why? «The stack of Windows CE is small
*Buffer overflow destroyed the 2KB
guard on the top of stack boundary

A successful exploit -
exp.c

— The PDA restarts when the
hello program is executed

e The program flows to our
shellcode

Shellcode

Return
Address

lafzfcde 17

4 in

T »

I
1/2[3]|4|5]6]7]|8]9]0]-

Tablalwler[t[y[uli]o]p

|
shitfa|s[d[f]a[h[i[k[1]:]"

Ctrl|z|x[c|v|b|n|m

2]

Filz Edit Help

L[4[t]«

EEEEEEEEEEEEE IF;

About Decoding Shellcode(1)

* \WWhy need to decode shellcode?

— The other programs maybe filter the special
characters before string buffer overflow In
some situations

— It 1s difficult and inconvenient to write a
shellcode without special characters by API
address search method in Windows CE

Part 7/7 <&
. T

oW W o cu e e o m IF?
About Decoding Shellcode(2)

* The newer ARM processor has Harvard
Architecture

— ARMO9 core has 5 pipelines and ARM10 core
has 6 pipelines

— It separates instruction cache and data cache
— Self-modifying code Is not easy to implement

EEEEEEEEEEEEE IF;

About Decoding Shellcode(3)

A successful example

— only use store(without load) to modify self-
code

— you'll get what you want after padding enough
nop Instructions

— ARM10 core processor need more pad
Instructions

— Seth Fogie's shellcode use this method@;‘:}

About Decoding Shellcode(4)

* A puzzled example
— load a encoded byte and store it after decoded
— pad Iinstructions have no effect

— SWI does nothing except 'movs pc,Ir' under
Windows CE

— On PocketPC, applications run in kernel mode.
So we can use mcr instruction to control
coprocessor to manage cache system, but it
hasn't been successful yet

Conclusion

 The codes talked above are the real-life buffer
overflow example in Windows CE

« Because of instruction cache, the decoding

shellcode Is not good enough @

 [nternet and handset devices are growing quickly,
so threats to the PDAs and mobiles become more
and more Serious

e The patch of Windows CE is more difficult and
dangerous

Reference

 [1] ARM Architecture Reference Manual
http://www.arm.com

e [2] Windows CE 4.2 Source Code
http://msdn.microsoft.com/embedded/windowsce/default.aspx

o [3] Details Emerge on the First Windows Mobile Virus
http://www.informit.com/articles/article.asp?p=337071

o [4] Pocket PC Abuse - Seth Fogie
o http://www.blackhat.com/presentations/bh-usa-04/bh-us-04-fogie/bh-us-04-fogie-up.pdf

* [5] misc notes on the xda and windows ce
http://www.xs4all.nl/~itsme/projects/xda/

e [6] Introduction to Windows CE
http://www.cs-ipv6.lancs.ac.uk/acsp/WinCE/Slides/

e [7] Nasiry 's way
http://www.cnblogs.com/nasiry/
* [8] Programming Windows CE Second Edition - Doug Boling

e [9] Win32 Assembly Components
http://LSD-PLaNET

Thank You!

san@nsfocus.com
san@xfocus.org

e
= —
o

£ AR EA TR

RERBERLAR (bW BRAE

MEFOCUS INFORMATION TECHNOLOGY COLLTD

