Hacking MANET

Building and Breaking Wireless Peering Networks

Riley “Caezar” Eller
Why or Why Not MANET?

• Ideals
 – Allows seamless roaming
 – Works when infrastructure breaks
 – Routing does not require administration
 – Functional in hostile environments
 – Farther from the Shannon curve due to lower typical transmission distance

• Problems
 – Network scalability
 – Effective, voluntary security
Mobile Networking

• People move a lot
• Fast dynamic routing is a hard problem
• Infrastructure solutions are much easier
• Hybrid infrastructure (or “fixed mesh”) reduces the problem somewhat
• People want a real solution
Here Comes the Science

- Major types of network routing protocols
 - Link State
 - Dyikstra SPF algorithm
 - Example: OSPF
 - Distance-Vector
 - Bellman-Ford algorithm
 - Example: RIP
 - Policy Based
 - Policies override core DV or LS style routing algorithms
 - Example: BGP
Distance-Vector Routing

• Values
 – Each device has a unique address
 – Applications don’t distinguish transports
 – Robust during partial failure
 – Perceived to be much more natural by users
 – Allows for a high mobility index

• Challenges
 – High processing complexity
 – High message complexity
Link State Routing

• Values
 – Low processing and message complexity
 – Comparatively inexpensive

• Challenges
 – Each interface has a unique address
 – Applications may require transport specific information, such as locally bound IP address
 – Exceptionally unnatural to users
 – Demands a low mobility index
Godzilla Versus Dyjkstra

- Places where LSR (or equivalents) wins
 - The Internet (except as noted below)
- Places where DVR (or equivalents) wins
 - Mesh networks
 - Interior gateway routing
 - Border gateway routing
 - Games and AI
Infrastructure-Mode Wi-Fi

- **Immobile**
 - Wired equivalency tether
 - Must sacrifice bandwidth exponentially to increase radius linearly
- **Inefficient**
 - Peer to peer messages eat double bandwidth
 - Close security model requires user intervention
Fixed Mesh Wi-Fi

• Marginal improvement at best
 – Client devices still tethered
 – Same scalability problems among access points
 – Reliable fail-over only by sacrificing footprint
 – Does nothing to improve disaster scenario
 – Worse spectrum allocation

• Lagging standard not due until 2008
What We Really Want

• Peer to peer network
 – Excellent security
 – VOIP and 3GPP reliable delivery
 – Automatic discovery
 – Maximum mobility
 – User defined network policy
Understanding the Link Layer

- Understanding mesh links
 - Nodes beacon to provide carrier sense
 - Discover peers automatically
 - Infer link quality from beacon packet reception
 - Acknowledge high quality beacons
 - Translate link quality into link metric, e.g.:
 - For 802.11b, 99% beacon reception implies about 1200 millisecond expected transmission delay
 - 40% reception implies nearly infinite delay
Attacking the Link Layer

- **Eavesdropping**
 - Discover participants and topology
 - Retrieve public keys (identity tracking)
 - Content interception
- **Sybil Attack**
 - Greeting flood
 - Storage or processing denial of service
Attacking the Link Layer

- Greeting and acknowledgement replay
 - Causes link quality overestimate
 - Causes degenerate routing
 - Increases processing and storage requirements
- Wormhole attack
 - Previous work here by S. Swami and others
 - Will discuss in more detail as a routing layer attack
Attacking the Link Layer

• Unauthorized access
 – Bandwidth reduction
 – Perimeter intrusion
• Selective jamming
 – Freeze the Wi-Fi MAC layer
 – Underestimate link quality
 – Isolate and conquer
Securing the Link Layer

- Link Cryptography
 - DH/DSA key exchange
 - Gives clear cryptographic session definition
 - Prone to computational denial of service attacks
 - Work tokens
 - Defend against DOS
 - Leverages desire to join against computation requirements
Securing the Link Layer

• Link Cryptography (continued)
 – Signed broadcasts
 • Exceptional computational cost
 • Prevents wormholes and other forgery attacks
 – Certified identity
 • Translates node identity into comprehensible string
 • Allows user control of policy
 • Impedes unauthorized access
Securing the Link Layer

• Other Techniques
 – Jittered timers
 • Greatly reduces risk of sniping
 • Makes selective jamming very difficult
 – Transient MAC address
 • Avoid manufacturer profiling
 • Cycle periodically to throw off listeners
Avenues for Future Research

• Acknowledgement of hidden nodes
 – Destroy two-hop topology graph
• Ubiquitous acknowledgement
 – Desynchronize link quality estimation
 – Ideal denial of service to perfect links
 – Like a rushing attack, but “from the future” rather than just “faster than allowed”
Understanding the Routing Layer

- Routing is a geometric problem
 - Link quality is driven by signal to noise ratio
 - Signal decreases with the square of distance
- Example
 - $1^2 + 2^2 < 3^2$; thus
 - $AB + BC < AC$; thus
 - A should route through B to reach C
Understanding the Routing Layer

• Understanding mesh routes
 – Advertisement based, e.g.:
 • Node R hears about node O through node P
 • “Receiver hears about Origin through nearby Peer”
 • Shorthand [R: P->O]
 – Requires temporal quality metric, e.g.:
 • Node R expects a message through P to take 3500 milliseconds
 • Shorthand [R: P = 3500]
Understanding the Routing Layer

• Understanding mesh routes (continued)
 – Metric sums over multiple hops, e.g.:
 • [P: O = 3500]
 • [R: O = 3000]
 • [R: P->O = 3500]
 • R->O = 6500
 – Algorithms need help to avoid routing loops
 • Must never accept older or slower information
 • Must track edition numbers to deal with asynchronicity
Attacking the Routing Layer

- Refusal to participate
 - Black hole
 - Drop all data packets
 - Very easy to detect
 - Gray hole
 - Drop some data packets
 - Discoverability proportional to packet drop ratio
Attacking the Routing Layer

• Underestimating distance
 – Wormhole
 • Requires sideband packet forwarding
 • Absorbs all traffic within $(H-1)/2$ hops radius
 – Invariant violation
 • Causes routing loops which may become packet storms

• Rushing attacks
 – Exploits “First past the post” duplicate removal algorithm
 – Example: DNS response spoofing
Attacking the Routing Layer

• Invisible “Million Man March”
 – Sybil attack on steroids
 – Flattens scaling topology
 – Destroys local routing efficiency
Defending the Routing Layer

• Trust-based link selection
 – Assume minimal trust of each peer initially
 – Increase trust slowly, decrease rapidly
 – Apply trust multiplier to advertised link cost
 – Contains and localizes damage by harming reputation of naïve intermediaries
Defending the Routing Layer

• Signed control messages
 – Computationally expensive
 – Eliminates rushing and wormhole attacks

• End-to-end validity probe
 – Augment trust metrics with cryptographically secure data or control message
 – Makes Sybil attacks expensive since identities are periodically required to respond
Conclusions

• With MANET we can have…
 – Discovery
 – Identity
 – Quality
 – Efficiency

• But first we need…
 – Scalable routing algorithm
 – Hardware cryptography
 – Fixes for 802.11 Ad Hoc
Going Forward

• What you can do to hurry the future
 – Seek out and play with emerging protocols
 – Develop P2P phone applications
 – Demand hardware crypto on small devices
 – Use Thin-MAC wireless cards
 – Hack It!