Malware Repository Requirements

Policy Analysis
Paul Vixie && David Dagon
Outline

• How malware is collected and shared now
• Proposed service-oriented repository
• Automated unpacking
• Header analysis
Current Practices

• Numerous private, semi-public malware collections
 – Need trust to join (for some value of “trust”)
 – “Too much sharing” often seen as competitive disadvantage

• Incomplete collections: reflect sensor bias
 – Darknet-based collection
 – IRC surveillance
 – Honeypot-based collection
Shortcomings

• Malware authors know and exploit weaknesses in data collection
• Illuminating sensors
• Automated victims updates
 – “Queen-bot” programs keep drones in 0-day window
Malware Life Cycle

Four conceptual phases of malware life cycle:

A-day: malware authored
0-day: release
D-day: first opportunity for detection
R-day: response (e.g., virus signature update)
Malware Life Cycle

Recent AV goal: reduce response time

AV update cycles previously measured weeks/days
Now measured in hours/minutes (or should be)
Malware Life Cycle

How to improve detection time...

Given that...
- Malware authors avoid known sensors
- Repositories don’t share
Sensor Illumination

• Technique
 – Malware authors compile *single*, unique virus;
 – Send to suspected sensor
 – Wait and watch for updates
Malware Life Cycle

Thus, response is hours/days; detection is days++

A Average order of time; anecdotes will vary
Queen Bot Programs

• Automated update of existing bot
 – Repacking with new key; multiple packers
 – Dead code injection
 – Variable renaming, functional decomposition

• New bot will
 – Evade prior AV signatures
 – Have same behaviour, goal, feature set
Malware Updating

Table: List

<table>
<thead>
<tr>
<th>IP</th>
<th>SOCKS</th>
<th>ID</th>
<th>COUNTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy IP</td>
<td></td>
<td>24065</td>
<td>KIWTRQVIRLBZOBEAYIJMMQAQHOBACPR United States</td>
</tr>
<tr>
<td>Copy IP</td>
<td></td>
<td>34733</td>
<td>UKBLHDIOQLRKLMZKKNWSWHXRCRTQMQMYMRQ</td>
</tr>
<tr>
<td>Copy IP</td>
<td></td>
<td>45726</td>
<td>EDKHVPYQYSLFQJPPNNIBSJRPSPGJAYR Taiwan</td>
</tr>
<tr>
<td>Copy IP</td>
<td></td>
<td>18881</td>
<td>ZEXEENQHGETYMGVKMEICDBQLDQTKCJL</td>
</tr>
</tbody>
</table>
Malware Life Cycle

Bot runs for ~1/2 day, and updates to new, evasive binary
Malware Life Cycle

Days

Minutes

A-day 0-day D-day R-day

UPDATE! UPDATE! UPDATE!
Malware Life Cycle

Days

Minutes

A-day 0-day D-day R-day

A-day 0-day D-day R-day

A-day 0-day D-day R-day

Perpetual Zero-day window

UPDATE!
Failures in Detection (Last 7 Days)

Blue: Infected files detected by all antivirus engines.
Red: Infected files not detected by at least one antivirus engine.

22:48 07/09/2006 CEST
Why Pack?

• Reduced malware size
• Obfuscation transformation
 – Opaque binaries prevent pattern analysis
 – Invalid PE32 headers complicate RE
• Increases response time
 – Unpacking often requires specialized skill sets
Who Shares Now, and Why?

• Current AV industry practice is basically “hostage exchange”
• Time-value of shared material has to approach zero first
• “Competitive advantage” means advantage to an AV's shareholders – or does it?
Is More Sharing Better?

• In F/OSS, the value of sharing is known to outweigh the value of hoarding
• We propose a similar model for malware
• Cost:Benefit ratio (to AV shareholders and customers) of specialization was obvious to Adam Smith (see *Wealth of Nations*)
• As with SALT-II, the interesting part of the problem is “compliance monitoring”
Malware Repo Requirements

- Malware repos **should not:**
 - Help illuminate sensors
 - Serve as a malware distribution site

- Malware repo **should:**
 - Help automate analysis of malware flood
 - Coordinate different analysts (RE gurus, MX gurus, Snort rule writers, etc.)
Approach: Service-Oriented Repository

- Repository allows upload of samples
 - Downloads restricted to classes of users
- Repository provides binaries *and* analysis
 - Automated unpacking
 - Win32 PE Header analysis
 - Longitudinal detection data
 - What did the AV tool know, and when did it know it?
 - Soon: Malware similarity analysis, family tree
Overview
Sample submissions

Trivial reduction step

Repeat samples removed by checksum

1

Existing AV signatures checked

2

Unable to work in virtualized context

3

Evasive binaries

PolyUnpac payload recovery

PE32 crafted for recovered payload

4

OS conflict, etc.

Hand analysis

5
Unpacking

• Dynamic analysis permits unpacking
 – Analogous to halting problem

• Heuristic approximation
 – White list jumps to: (static) basic block entry points, and DLL functions
 – If known, continue; else assume halting
 – Rinse, lather, repeat for recursive packing
Unpacking Heuristic

1. Static Analysis: generates Static Code View
2. Dynamic Analysis: queries captures/outputs

Q: Current sequence in static model?

Malware analyzes single-step executes

Yes

No

stop

Unpacked Code
Unpacking Example
Results

- Detecting packing
 - 6K sample set
 - Compared with PEiD

<table>
<thead>
<tr>
<th>Tool</th>
<th>Packed</th>
<th>Unpacked</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE iD</td>
<td>43.00%</td>
<td>53.00%</td>
</tr>
<tr>
<td>MalwareRepo</td>
<td>63.00%</td>
<td>37.00%</td>
</tr>
</tbody>
</table>
Results

• Improved AV detection

6K very old Samples

AV Scan

5.2K Samples Claimed VX

0.8K Claimed “OK”

Unpacking

42 are now claimed VX

10-40% improved AV detection on “old” stuff
Repository User Classes

• Unknown users
 – Scripts, random users, even bots

• Humans
 – CAPTCHA-verified

• Authenticated Users
 – Known trusted contributors
Repository Access Goals

• Unknown users
 – Upload; view aggregate statistics

• Humans
 – Upload; download analysis of their samples

• Authenticated Users
 – Upload; download all; access analysis
Hub/Spoke Structure

- **Hub**: web server, file store, database, authentication system – mirrorable
- **Spokes**: unpacking and analysis partners
 - receive a feed showing new malware
 - can download any/all of it
 - can upload unpacked versions, output of their in-house (proprietary) analyzers
 - can advertise value-added in-house content
Economic Goals

• Economics is about *human action* not simply money
• So, what do we want people to do, or stop doing, or do differently?
• *Act in their own best interests*, of course!
• So, we intend to make the benefits of sharing more intuitive to an AV CEO
Social Goals

• In human (biological) viruses, disclosure is an obligation – hoarding is unthinkable
• Somehow when the virus is not biological, hoarding is thinkable
• Is it life-safety that makes the difference, or is it profitability?
• We see no necessary conflict between sharing and profitability
Conclusion

• Service-oriented repository
• See tisf.net for details
• Questions?