Tactical Exploitation

"The Other Way to Pen-Test"

http://metasploit.com/confs/

H D Moore (hdm[at]metasploit.com)
Valsmith (valsmith[at]metasploit.com)

Last modified: 06/27/2007
Contents

1 Introduction .................................................. 2
   1.1 Abstract ................................................. 2
   1.2 Background ............................................. 2

2 The Tactical Approach ....................................... 3
   2.1 Vulnerabilities ........................................... 3
   2.2 Competition ............................................. 3

3 Information Discovery ........................................ 4
   3.1 Personnel Discovery ....................................... 4
      3.1.1 Search Engines ....................................... 4
      3.1.2 Paterva’s Evolution ................................... 5
   3.2 Network Discovery ......................................... 5
      3.2.1 Discovery Services .................................... 5
      3.2.2 Bounce Messages ..................................... 6
      3.2.3 Virtual Hosting ...................................... 7
      3.2.4 Outbound DNS ........................................ 8
      3.2.5 Direct Contact ........................................ 8
   3.3 Firewalls and IPS ......................................... 9
      3.3.1 Firewall Identification ............................... 9
      3.3.2 IPS Identification .................................... 9
   3.4 Application Discovery ..................................... 9
      3.4.1 Slow and Steady wins the Deface .................... 10
      3.4.2 Finding Web Apps with W3AF ......................... 10
      3.4.3 Metasploit 3 Discovery Modules ....................... 10
   3.5 Client Application Discovery ............................. 10
      3.5.1 Browser Fingerprinting ............................... 11
      3.5.2 Mail Client Fingerprinting ............................ 11
   3.6 Process Discovery ......................................... 12
      3.6.1 Traffic Monitoring with IP IDs ....................... 12
      3.6.2 Usage Monitoring with MS FTP ....................... 12
      3.6.3 Web Site Monitoring with HTTP ....................... 13
# Information Exploitation

## 4.1 Introduction

## 4.2 External Networks
- 4.2.1 Attacking File Transfers
- 4.2.2 Attacking Mail Services
- 4.2.3 Attacking Web Servers
- 4.2.4 Attacking DNS Servers
- 4.2.5 Attacking Database Servers
- 4.2.6 Authentication Relays
- 4.2.7 Free Hardware

## 4.3 Internal Networks
- 4.3.1 NetBIOS Names
- 4.3.2 DNS Servers
- 4.3.3 WINS Servers
- 4.3.4 Authentication Relays

## 4.4 Trust Relationships
- 4.4.1 NFS Home Directories
- 4.4.2 Hijacking SSH
- 4.4.3 Hijacking Kerberos

# 5 Conclusion
Chapter 1

Introduction

1.1 Abstract

Penetration testing often focuses on individual vulnerabilities and services. This paper introduces a tactical approach that does not rely on exploiting known vulnerabilities. Using combination of new tools and obscure techniques, we will walk through the process of compromising an organization without the use of normal exploit code. Many of the tools will be made available as new modules for the Metasploit Framework.

1.2 Background

The authors of this paper have been involved in security auditing and penetration testing for the last ten years. A common trend among security staff is the use of off-the-shelf software to automate the penetration test process. Tools like Nessus, Retina, and Core Impact have replaced manual audits and checklists at many organizations.

While these tools do a great job of reducing the time and knowledge requirements of the penetration tester, their use can lead to a certain lazyness among the security staff. Many valuable compromise vectors can be missed because they are not part of the "canned" product. This paper is intended to shine some light on the more obscure and less-used techniques that the authors have depended on for many years.

The exploit techniques listed in this paper depend solely on the configuration of the target and the features of the target platform. No "0day" will be dropped in the normal sense, but many tips, tricks, and interesting attacks will be covered.
Chapter 2

The Tactical Approach

2.1 Vulnerabilities

Vulnerabilities are transient. What is found one day may be patched on the next. Security software and operating system improvements can make even simple vulnerabilities unusable for a penetration test. Instead of treating a network like a list of vulnerabilities, an auditor should consider the applications, the people, the processes, and the trusts. The key to gaining access is to use what is available to bring you closer to the next goal. Using this approach, even a fully-patched network will provide exploitable targets.

Hacking is not about exploits. As many professional auditors know, only one or two real exploits may be used during the a penetration test. The rest of the time is spent obtaining passwords, abusing trust relationships, tricking authentication systems, and hijacking services to gain access to more systems. A successful attack has everything to do with gaining access and control of data.

2.2 Competition

Any security test is a race against time. An auditor faces competition from real attackers, internal and external, that are not bound by the same scope and restrictions as themselves. For example, as a business practice, a security test must not interfere with production services or modify critical data. Attackers are opportunists. Whether a server is hosted locally or on a third-party is not a concern. Their only concern is gaining access to the data and controls they seek. Anything the auditor does not test, he must assume someone else will.
Chapter 3

Information Discovery

The first step to any security engagement is the initial discovery process. This is the process for discovering as much background information about the target as possible including, hosts, operating systems, topology, etc. This chapter discusses a variety of discovery techniques, starting from the outside, leading in, that can be used to plan and initiate a penetration test.

3.1 Personnel Discovery

Security is a people problem, first and foremost. People are responsible for writing software, installing that software, and providing configuration and maintenance. When performing a penetration test against an organization, the first step is to identify the people involved in creating and maintaining the infrastructure. Fortunately, a number of great tools and services exist that can be used to identify the gatekeepers of a given organization.

3.1.1 Search Engines

Google is still one of the best resources available for information discovery. Searching for an organization’s name across the web can provide a list of web sites and services provided by that organization. Searching for the name across newsgroup archives can provide a list of past and current employees. Newsgroup posts often include the full title and username of employee as part of the post content. Image searches can sometimes yield pictures of the people, offices, and even occasionally server rooms.
3.1.2 Paterva’s Evolution

Paterva[1], a South African company headed by Roelof Temmingh, provides a great tool called Evolution. At this time, Evolution is still in the beta phase, but a live web interface is hosted at http://www.paterva.com/evolution.html. Evolution is able to cross-reference information from a large set of public data source, using a wide variety of seed values (Name, Phone Number, Email Address, etc). For example, a search for "HD Moore" (one of the authors), returned a list of web sites, valid email addresses, and PGP keys.

3.2 Network Discovery

Given the name of an organization, discovering what networks are under their control can be a challenge. Starting with the results of the Personnel Discovery phase, the typical process involves DNS zone transfers, Whois requests, and reverse DNS lookups. These tools fall short of being able to show what hosts exist on a given IP or what other domains are owned by the same person.

3.2.1 Discovery Services

Thankfully, a number of great new web services are available that can dig even deeper. The CentralOps.net and DigitalPoint.com web sites provide a number of useful services for network discovery. CentralOps.net provides a "Domain Dossier" service which combines the various DNS and Whois requests into single report, with the option to perform a quick port scan as well. The DigitalPoint.com tools section provides a zone transfer tool, allowing you to gather information without allowing the target to see your real source address.

The DomainTools.com web site provides a number of great features, but the "Reverse IP" utility is by far the most valuable. This utility accepts an IP address or host name as an input and provides a list of all domains that reverse back to that IP. Unfortunately, the full result set is only available to members, but a trial account is available for free. The "Reverse IP" feature is a great way to determine what other web sites and businesses share the same server. For example, a "Reverse IP" query of Defcon.net provides the following two result sets:

8 Results for 216.231.40.180 (Defcon.net)
Website DMOZ Wikipedia Yahoo
1. Darktangent.net 0 listings 0 listings 0 listings
2. Defcon.net 0 listings 0 listings 0 listings
3. Defcon.org 1 listings 18 listings 1 listings
The indirect discovery methods mentioned above are great to get started, but a more active approach is needed to obtain detailed network information.

### 3.2.2 Bounce Messages

One of the best techniques available for internal network discovery is the e-mail "bounce" feature of many mail servers. The attack works by sending an email destined to a non-existent user at the target organization. The email server will send a bounce message back indicating that the user does not exist. This bounce message often contains the internal IP address and host name of the mail server itself. This technique is particularly effective against Exchange servers that are placed behind a mail relay of some sort. For example, the following headers expose the internal host name and IP address of RSA.com's mail server:

```
Received: (qmail 10315 invoked from network); 28 Jun 2007 15:11:29 -0500
Received: from unknown (HELO gateway1.rsasecurity.com) (216.162.240.250)
    by [censored] with SMTP; 28 Jun 2007 15:11:29 -0500
Received: from hyperion.rsasecurity.com by gateway1.rsasecurity.com
    via smtpd (for [censored]. [xxx.xxx.xxx.xxx]) with SMTP; Thu, 28 Jun 2007 16:11:29
Received: from localhost (localhost)
    by hyperion.na.rsa.net (MOS 3.8.3-GA)
    with internal id DEP35818;
```
3.2.3 Virtual Hosting

It is common practice to host multiple web sites on a single web server using virtual hosting. A common configuration error is to host an internal or employee-only web site on the same physical server as an external web site. When the server is accessed over the internet using the external host name, the external web site is displayed. However, an attacker can connect to the web server, specify an internal host name in the HTTP Host header, and gain access to internal-only resources. For example, the following host names are often used to host internal resources and can be exposed on Internet-facing web servers:

- localhost
- www
- intranet
- admin

The Apache HTTP web server supports a feature called "Dynamic Virtual Hosting" [2]. This feature allows new virtual hosts to be added by creating a subdirectory on the web server and adding the appropriate DNS entry. When Apache sees a web request, it will look for a subdirectory containing the name sent in the HTTP Host header. This feature contains an interesting flaw. If a Host header is specified that contains %00/, the server will return a listing of all available virtual hosts as an Apache directory listing. This technique only works if directory indexes are enabled for the "global" configuration.

Virtual host name tricks work for more than just virtual host configurations. Many web applications will allow special access if the "localhost", "127.0.0.1", or "admin" host names are placed into the HTTP Host header.
3.2.4 Outbound DNS

An interesting approach to network discovery is to analyze DNS queries sent by internal DNS servers to external hosts. To perform this test, an auditor would configure an external DNS server to handle all requests for a designated subdomain. To force the DNS lookup to occur, an email can be sent to a non-existent internal user from an addressed within the configured subdomain. This trick can also work when specifying a random host name within the subdomain as the HTTP Host header of a web request.

Regardless of how the DNS lookup is initiated, the important part is what the request itself looks like when it reaches the auditors DNS server. The source port of the request can indicate the type of server which sent the request and whether or not the request was proxied through a NAT device. By forcing the target to perform multiple DNS requests, strong fingerprinting can be performed. For example, some DNS servers will use the same source port for all outbound requests. Other DNS servers will use a predictable transaction ID sequence. Certain brands of DNS caches and load balances will cache all records of the DNS reply, even if it contains a name other than one included in the original request. Through this type of analysis, it is possible to fingerprint and potentially spoof responses to internal DNS queries.

3.2.5 Direct Contact

When all else fails, the most straightforward way to determine network location and topology is by attacking the users directly. In this scenario, the auditor would build a list of email addresses and instant messaging IDs for the target organization. The auditor would then sent a HTTP link to a web site that performed a series of tests against the users browser. In this fashion, its possible to determine the internal and external addresses of the user’s workstation and the different versions of software they have installed. For example, the Metasploit Decloak tool reports the following information for one of the authors' workstation:

- External Address: xxx.xxx.197.131
- Internal Host: shank
- Internal Address: 10.10.xxx.xxx
- DNS Server (Java): 151.164.20.201
- DNS Server (HTTP): 151.164.20.201
- External NAT (Java): xxx.xxx.197.131
3.3 Firewalls and IPS

Firewalls have evolved from simple packet filters to stateful, content-aware network gateways. These products can interfere with a penetration test and waste the time of the auditors and network administrators alike. The first step to mitigating the problems caused by these devices is to identify and fingerprint them. Once the type of device is known, working around content-filters and avoiding blacklisting is much easier.

3.3.1 Firewall Identification

One of the easiest ways to determine the type of firewall in use is to examine the source port allocation scheme of outgoing connections. This can be accomplished in a number of ways, but looking for outbound web connections to an advertised (or spammed) web site is often the quickest approach. Another direct method of fingerprinting a firewall is by sending a series of TCP connections attempts with various parameters to a service protected by the firewall. For example, the SYN packets sent by the hping2 tool are silently dropped by Netscreen firewalls (due to missing TCP options).

3.3.2 IPS Identification

Intrusion Prevention Systems (IPS) are designed to detect and block attacks before they reach the target host. These devices can be fingerprinted by sending a series of attacks with slightly different data and seeing which ones are blocked. A tree model can be constructed that makes it easy to identify a specific IPS and signature revision. For example, the TippingPoint IPS can detect PHF requests when 0x0D is used to separate the method and URI of the HTTP requests, but fails to detect the request when 0x0C is used instead. Other IPS devices will allow 0x0D as well. To avoid detection by an administrator, a set of attacks can be chosen that are marked as "drop with no alert" in the default configuration of the IPS.

3.4 Application Discovery

Applications are the real target of most attacks. Applications host the data and manage access to it. Every application is a potential entry point into the network, but finding these applications can be challenging. The most common way to enumerate applications is to use a service scanner, such as Nmap, Amap, Nikto, or even Nessus.
3.4.1 Slow and Steady wins the Deface

The existing tools do a good job at finding known applications, but they also trigger intrusion prevent systems and active firewalls. They key to avoiding alerts and IP blacklisting is through the use of slow, targetted service scans. For example, the following Nmap command line will detect Microsoft SQL Servers without triggering the portscan detector of a popular IPS:

```
# nmap -sS -P0 -T 0 -p 1433 A.B.C.D/24
```

3.4.2 Finding Web Apps with W3AF

Andrews Riancho released a tool called the Web Application Attack and Audit Framework[8] that is a do-everything console for the HTTP protocol. This tool includes a discovery feature that allows an auditor to locate applications on a web service through brute force and intelligent guessing.

3.4.3 Metasploit 3 Discovery Modules

The latest version of the Metasploit Framework includes a number of application discovery modules, located in the auxiliary/scanner/ subdirectory. The modules can be used to detect services that are difficult to find otherwise. For example, the sweep_udp module can detect DNS, SNMP, NetBIOS, Portmap, and a number of other UDP services all in one quick pass:

```
[*] Sending 6 probes to xxx.xxx.xxx.0->xxx.xxx.xxx.255 (256 hosts)
[*] Discovered DNS on xxx.xxx.xxx.19 (TinyDNS)
[*] Discovered DNS on xxx.xxx.xxx.249 (BIND 8.4.6-REL-NOESW)
[*] Discovered DNS on xxx.xxx.xxx.250 (Microsoft)
[*] Discovered SNMP on xxx.xxx.xxx.170 (Ethernet Routing Switch)
[*] Discovered SNMP on xxx.xxx.xxx.171 (ProCurve J8692A)
```

3.5 Client Application Discovery

Client applications, such as web browsers and email clients, make a great entry point to an otherwise-secure network. While it is possible for an administrator to lock down a single web server and firewall, preventing each and every internal user from direct attacks is extraordinarily difficult. In order to determine the types of attacks to launch at internal users, the auditor needs to know what types of software is in use and whether e-mail delivery of exploit content is possible.
3.5.1 Browser Fingerprinting

The web browser is the new vector of choice for exploitation. Identifying the target’s browser can be helpful in understanding what types of attacks to perform. Once the browser has been identified, an auditor is able to choose specific attacks that are highly likely to succeed. There are several methods for fingerprinting browsers, but the most common method is to entice the target to access a web page on a server under the auditor’s control. When the target connects to the server, a web page is provided that performs a series of server-side and client-side tests to determine the target’s browser, operating system, and sometimes even patch level. The User-Agent header sent by the browser contains a wealth of knowledge all by itself:

Internet Explorer on Windows 2000
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

Firefox running on Windows XP
Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.4) Gecko/20070515 Firefox

Opera on Windows 2000
Mozilla/4.0 (compatible; MSIE 6.0; MSIE 5.5; Windows 2000) Opera 7.0

Mozilla on Windows 2000
Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:1.6) Gecko/20040113

3.5.2 Mail Client Fingerprinting

Mail clients are often underestimated as a potential attack vector. Unfortunately, identifying a target’s mail client poses some challenges. In the corporate world, Message Delivery Notifications (MDNs) can be used to obtain a reply message that contains the name and version of the mail client in use. When MDNs are not available, the auditor must rely on abusing ambiguities within the MIME standard to show different content to each mail client. The message below contains the important headers from a MDN sent by an Outlook Express client:

MIME-Version: 1.0
Content-Type: multipart/report;
    report-type=disposition-notification;
    boundary="-----_NextPart_000_0002_01C7BA3D.0DA9ED40"
X-Mailer: Microsoft Outlook Express 6.00.2900.2869
X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.2962
3.6 Process Discovery

Automated business processes can often create windows of opportunity for an attacker. Many financial organizations use insecure file transfer methods to share information, but since the attack window is only open for a few minutes at a time, the perceived risk is low. For example, the FTP protocol is still in wide use at banking organizations, and even if the files are encrypted, the control channel is not. The difficulty in auditing a business process is determining when and how it is performed.

3.6.1 Traffic Monitoring with IP IDs

One of the great features of the IPv4 protocol is how the IP ID field is implemented. Many operating systems will increment this field by one for every packet sent by the host. This allows an auditor to determine how many packets have been sent within a given window of time and allows for interesting attacks such as blind port scanning\cite{9}. The auditor can track traffic patterns over a long period of time by probing the target at regular intervals and recording the change in the received IP ID value. This type of monitoring can discover business processes such as file transfers, backup operations, and other bursts of activity caused by automated systems.

3.6.2 Usage Monitoring with MS FTP

The Microsoft FTP service allows anonymous users to execute the "SITE STATS" command. This command returns a count for each unique command executed on the server since the service was started. An auditor can access the server and poll these stats over a long period of time to build up a timeline of when certain operations are performed. For example, the STOR command stat is incremented when a file is uploaded, so watching for a jump in this stat can provide the time that an automated upload is performed. The following output from Microsoft’s public FTP server demonstrates that out of over two billion login attempts, only 3035 STOR commands were issued.

<table>
<thead>
<tr>
<th>SITE STATS</th>
</tr>
</thead>
<tbody>
<tr>
<td>200–ABOR  : 2138</td>
</tr>
<tr>
<td>ACCT       : 2</td>
</tr>
<tr>
<td>ALLO       : 32</td>
</tr>
<tr>
<td>APPE       : 74</td>
</tr>
<tr>
<td>CDUP       : 5664</td>
</tr>
<tr>
<td>CWD        : 388634</td>
</tr>
<tr>
<td>DELE       : 1910</td>
</tr>
<tr>
<td>FEAT       : 2970</td>
</tr>
</tbody>
</table>
3.6.3 Web Site Monitoring with HTTP

The HTTP 1.1 protocol supports a "Last-Modified" attribute. When a compliant HTTP server (such as Apache) receives a request for static content, it will automatically return the date at which the resource was last modified. This feature can be used to expose automated update times for corporate web sites.
Chapter 4

Information Exploitation

4.1 Introduction

The last chapter focused on information discovery techniques. This chapter builds on these techniques by abusing documented features to compromise target systems.

4.2 External Networks

The external network is the starting place for most penetration tests. External hosts are often locked down, patched, firewalled, and filtered. The only targets available are intentionally exposed applications, VPN services, and temporary paths for client-initiated UDP sessions.

4.2.1 Attacking File Transfers

File transfers flowing between internal and external hosts can be subject to attack, depending on the protocol and the firewall involved.

Attacking FTP Transfers

The FTP protocol uses ephemeral ports for data transfers, exposing an open data port on either the client or the server to a race condition. Depending on the FTP software, it may be possible to connect to the data port and receive the contents of a downloaded file or be able to write the contents of an uploaded
file. The pasvagg.pl\textsuperscript{[13]} script can be used to hijack FTP transfers when the server allows anonymous access, data ports are allocated sequentially, and the FTP server allows connections to the data ports from IP addresses other than the initiating client. Any FTP server that supports "FXP" mode is vulnerable to this attack.

**Attacking NFS Transfers**

The NFS protocol involves a number of independent RPC services, each of which is subject to interference when used over a NAT gateway. The NFS services will accept a response from any source IP and port that contains valid data, even if that host has no relation to the address that was specified in the NFS connection parameters. The reason for this is to support multi-homed NFS servers, where RPC responses flow back from a different IP then the address that the client connected to.

To accommodate NFS traffic over NAT, older versions of the Linux kernel and many modern NAT devices will allow UDP responses to be sent back to the client from other IP addresses. In effect, this exposes the client RPC services to the Internet when the client establishes a connection from behind a NAT device. The challenge from an auditor’s viewpoint is finding the ephemeral port used to relay the connection and then identifying what RPC service it belongs to.

### 4.2.2 Attacking Mail Services

A typical mail system is composed of one or more relay systems, some form of antivirus/spam filter, the real mail server itself, and finally the user’s email client. In most penetration tests, the focus is on the intermediate systems, however the mail clients themselves can be targeted. For example, on Mac OS X, if two email messages are received that contain the same attachment name, the newer message can overwrite the previous message’s attachment if enough fields match. This can be used to replace a trusted attachment with a backdoor within the users mailbox.

### 4.2.3 Attacking Web Servers

Even though web servers are the most visible targets on an external network, many penetration testers overlook obvious vulnerabilities. A brute force of common file and directory names can expose administrative areas, backup files, archives of the entire site, and much more. Sending internal host names in the HTTP Host header can provide access to internal sites and employee-only areas. Nearly all web servers have applications installed these days and any unrecognized application should be acquired from the vendor and audited for
flaws. Finally, some load balancers have trouble with long-lived HTTP sessions and can leak data from other users given the right load.

4.2.4 Attacking DNS Servers

Over the last ten years, most DNS servers have been configured to reject zone transfers from unauthorized hosts. Instead of pulling the entire zone, the auditor must brute force possible domains and host names to determine whether those entries exist. Many DNS servers are misconfigured to allow reverse DNS lookups of private addresses, exposing the names and addresses of important servers on the internal network. As mentioned in outbound DNS section, many DNS servers are still vulnerable to transaction ID prediction, or race conditions such as those created by the Birthday Attack[10]. A successful attack can lead to injection of false DNS records into the cache and a potential hijack of internal and external domains, depending on the configuration of the network.

4.2.5 Attacking Database Servers

Although database servers are rarely exposed to the external network, its a good idea to perform a quick scan for common database services anyways. Many business applications (Saleslogix, etc) run in a two-tier mode that requires direct access to the database server for them to function. Keep in mind that some database servers, such as Informix, still contain publicly-known, unpatched vulnerabilities.

4.2.6 Authentication Relays

One of the most effective attacks on internal users from outside of the network relies on authentication relays. Many organizations expose Microsoft IIS or Exchange servers to the Internet. These servers allow Windows domain authentication using the NTLM protocol. If the victim’s firewall has not been configured to drop outbound connections on port 139 and 445, it is possible to send a user an email message, or redirect them to a web page, that will force their workstation to initiate a SMB connection to a host of your choice. At this point, the actual impact depends on the version of Windows on the workstation and in some cases, what web browser or mail reader they use.

On Windows 2000 and earlier systems, the browser will automatically negotiate NTLM authentication with the remote SMB server, using the current username and password of the user. If the auditor provides a malicious SMB server that relays this authentication to an externally accessible IIS or Exchange server, they can obtain direct access to that user’s account. On Windows XP and
never systems, this technique is not always possible from an external network. The NTLM credentials used by SMB, HTTP, SMTP, POP3, and IMAP4 are usually interchangeable, provided you have a tool to perform the relay.

An alternative to relaying the authentication credentials is to capture and crack the password hash itself. A number of tools exist for this purpose, including the venerable L0phtcrack (no longer available) and Cain and Abel[11]. More information about the capture process can be found in Warlord’s article in the Uninformed Journal[14].

4.2.7 Free Hardware

Last resort. The auditor travels the office of the target and hands out free USB keys (autorun, of course) to anyone who will answer a short survey. Alternatively, he can snail-mail CDROMs containing trojan, wrapped into an autorun or application installer (goodbye privilege separation on Vista). Possible labels for the CD include “Free MP3s”, “Complimentary License”, and so on. If the budget is available, the auditor can mail out portable handheld devices, such as the Nokia Internet Tablet or the Sharp Zaurus, containing a full suite of Linux-based backdoors.

Alternatively, the auditor can create a custom UPS power brick containing an embedded PC. The auditor would purchase a 350VA or higher battery backup that has surge protection for ethernet ports, rip out the battery, splice a power strip into the main power adapter, insert the guts of a Linksys WRT54L, insert a four-port Ethernet switch, and prepare to visit the target’s office. Once inside the office, the auditor can make an excuse to be near the network devices (printers, fax machines, etc) and install or swap out the rogue UPS. An example of this modification can be found at [12].

4.3 Internal Networks

The term internal network usually refers to the soft, squishy interior of most corporate networks, but it can also refer to a network provided to a specific victim by way of a rogue access point. Once internal network accessed is obtained, a wide range of new attacks become possible.

4.3.1 NetBIOS Names

The NetBIOS protocol is used by a number of applications to locate important hosts on the network. Some NetBIOS names are treated as special cases. For example, the NetBIOS name “WPAD” will automatically be used as a HTTP
proxy server if it resolves. The name "ISASRV" is a special case for clients looking for an ISA Server Proxy. Third-party applications have similar preferences. The Computer Associates Licensing Client will look for a local host called CALICENSE to send authorization requests to.

### 4.3.2 DNS Servers

DNS servers on the internal network are often configured to allow unauthenticated updates. Even when a Microsoft DNS server is configured to reject DNS-based update requests, it's still possible to inject names into the local DNS zone by passing these names as the hostname of DHCP client requests (the -h option for the ISC dhcpcd client). These types of DNS attacks can allow an internal attack to hijack all access to a critical system, impersonate servers, and stage new attacks against the affected clients.

### 4.3.3 WINS Servers

In addition to NetBIOS and DNS, Windows clients also support name lookups via the WINS protocol. Normally, the DHCP server is responsible for telling each client what server to send WINS requests to. However, through DNS hijacking and NetBIOS announcements, it is possible to convince a client to use a malicious WINS server instead.

### 4.3.4 Authentication Relays

In the External Networks section, we describe a relay attack against SMB and other NTLM related services. From the external network, this attack is somewhat limited, since Windows XP and newer systems will not autonegotiate NTLM. On the internal network, this attack can be devastating when combined with one of the DNS, WINS, or NetBIOS attacks mentioned above. If the auditor can spoof the name of a trusted server, the relay attack can be used to connect back to the client system via SMB, and if the user has administrative access, take full control of the system via the file system and services functions.

### 4.4 Trust Relationships

Trusts are one of the most important things to understand and use in a pen-test. Trusts can encompass many concepts such as:

- Host to host
- Network range to host
- User to host
- User to network
- Authentication tickets/tokens
- Applications

Trusts are basically agreements between two entities that allow for some kind of access. If an auditor has access to one entity, then they should be able to utilize the trust with the second entity to gain an advantage. Often the target an auditor wants to attack is out of reach for various reasons such as firewalls, TCP Wrappers, NAT’s etc. Leveraging trusts can be a powerful technique for getting around these types of barriers.

For example, lets say the target is 192.168.0.1 and the auditor has acquired the username and password by some means. The target is running SSH on port 22 for remote logins. However, the target is also configured with TCP Wrappers which only allow SSH connections from networks in the 192.168.1 address range. The auditor would not be able to directly log into the target under these conditions. However if the auditor was able to compromise a system on the 192.168.1 network, then by leveraging that trust they would be able to log into the system over SSH from that network instead or via a portforward such as:

```
# Create a port forward from 192.168.1.2 to 192.168.0.1
$ datapipe 192.168.1.2 22 192.168.0.1 22

# (This bounces through the port forward to 192.168.0.1 port 22)
$ ssh 192.168.1.2
```

One real world example of an interesting trust encountered by the authors was in the form of a custom software licensing and distribution application. All the computers on the target network were required to have this software installed and the software ran with administrative privileges. This means that the application was ”trusted” by every computer. This application carried an administrative username and password inside its code in order to operate. By reverse engineering this application the account information was extracted. The auditors then leveraged the fact that this account was widely trusted in order to compromise every host on the network. Any resource trusted by more than one user or computer is a potential leverage point for the auditor.

There are several specific trust technologies which often provide good opportunities for the auditor to gain access on many more hosts. These will be covered in the next sections.
4.4.1 NFS Home Directories

Many large networks use a Network File System (NFS) protocol server to share files and home directories to the clients. There are many ways to configure this type of system but generally port 2049 UDP or TCP is open on the server, a directory is exported either to anyone or to specific hosts and read/write/execute permissions are assigned. The clients then mount these exported directories which appear as just another local directory on their file systems. Often NFS is used in conjunction with Network Information Services (NIS) to automatically configure what exports should be mounted and authenticate users. These types of systems are often setup so that any user can log in on any machine and receive the same home directory.

An attacker may develop a scanner for port 2049 in order to locate any NFS servers on the target network. An auditor can use a tool called showmount in order to gain information about how the NFS server is configured.

# su - alice
[alice@homeserver ~] cd .ssh
[alice@homeserver .ssh] ssh-keygen -t rsa
Enter file in which to save the key (/home/alice/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/alice/.ssh/id_rsa.
Your public key has been saved in /home/alice/.ssh/id_rsa.pub.
The key fingerprint is:

[alice@homeserver ~] cp id_rsa.pub authorized_keys ; showmount -a homeserver
tetris:/vol/home/alice

[alice@homeserver ~] ssh tetris
Last login: Thu Jun 28 11:53:18 2007 from homeserver

[alice@tetrix ~]

4.4.2 Hijacking SSH

SSH can also be used to gather intelligence about other potential targets on the network. Every time a user connects to a system using SSH a file is created in /.ssh/ called known_hosts. By examining this file an attacker can see other hosts that trust the user.

[alice@homeserver .ssh]$ cat known_hosts
dontownme,192.168.1.20 ssh-rsa AAABB3Nza[...]

QSM=
Using the SSH keys described above, an attacker with access to these keys can potentially log into any of these hosts as alice, without a password.

SSH master mode is another feature which can help the auditor in penetrating new hosts without using exploits. Master mode lets the user to set up a tunnel which allows multiple sessions over the same SSH connection, without re-authentication. This means that if one SSH connection is setup to a host, using master mode, then an attacker and spawn other sessions over this same connection without having to know a password or have access to a key. Another benefit of master mode is that it is client dependent so the server version doesn’t matter. The implications of this are that if you can replace the users ssh client, master mode will work regardless of the version of the server at the other end.

There are many ways to convince a user to SSH in master mode. One obvious method would be to alias SSH to SSH -M so that the user runs it without knowing. Another method is to modify the users SSH config file to always run in master mode.

Edit `~/.ssh/config`

Add:

```
Host *
    ControlMaster auto
    ControlPath ~/.ssh/sockets/%r@%h:%p
    Mkdir ~/.ssh/sockets
```

Now when the user SSH’s to another host, it will be as if the used the -M switch. If you can become the user, you can then SSH to the host as well without authenticating over the existing connection.

A real world example of using SSH hijacking to gain access to many hosts was when the authors managed to compromise a major home directory server exporting over NFS to hundreds of clients. The authors dropped their own passwordless ssh key in every users home .ssh/ directory and then used a script to extract all unique hosts from every known_hosts file. They could then SSH to 100’s of nodes on the network, as any user they chose.

### 4.4.3 Hijacking Kerberos

Kerberos is an authentication protocol. It provides strong authentication for client/server applications by using secret-key cryptography. Kerberos generates "tickets" to be used for authentication to various services. On many operating
systems this ticket is stored as a file owned by the specific user in the /tmp directory starting with the name krb.

Kerberos hijacking is a process of capturing a users ticket and using it to access resources that trust the user. In general this means logging into other computers that accept the users kerberos ticket. This attack abuses the fact that each node trusts the kerberos system. This allows the attacker to move around a network, compromising hosts, without using exploits or setting off alarms because in general it will look like legitimate user behavior.

The general procedure to hijack kerberos tickets begins with gaining root access to a kerberized system with multiple users. It continues with finding a user to target and listing all the files in /tmp. The attacker then su’s to the user and invokes klist to figure out what ticket filename is expected. Then the ticket is copied from /tmp to the expected filename. Finally kinit is invoked again to check the ticket status. Now the attacker should be able to log into any kerberized system that trusts the hijacked user, without having to supply a password. An example follows.

What a real user sees when invoking klist:

target|alice|1> klist
Default principal: alice@target
Valid starting Expires Service principal
06/28/07 11:03:25 06/28/07 21:03:25 krbtgt/target@target
renew until 07/05/07 11:03:25
Kerberos 4 ticket cache: /tmp/tkt5116
klist: You have no tickets cached

This means that the user alice has a ticket assigned which allows her to connect to any kerberized system, without supplying a password, until the date of expiration indicated.

What attacker does:

bash-3.00# ls -al /tmp/krb*
-rw------- 1 alice eng 383 Jun 28 08:19 /tmp/krb5cc_10595_ZH8kq4 <---- FREE ACCESS!
bash-3.00# klist
Ticket cache: FILE:/tmp/krb5cc_6425 <---- expected filename
Default principal: valsmith@target
Valid starting Expires Service principal
06/28/07 12:14:50 06/28/07 22:14:50 krbtgt/target@target
renew until 07/05/07 12:14:39

Change the file to the expected name and check status:
bash-3.00# cp /tmp/krb5cc_10595_ZH8kq4 /tmp/krb5cc_6425
bash-3.00# klist
Ticket cache: FILE:/tmp/krb5cc_6425
Default principal: alice@target <--- we are now her!

Valid starting       Expires       Service principal
06/28/07 08:19:42   06/28/07 18:19:42   krbtgt/target@target
                renew until 07/05/07 08:19:42

There are other types of attacks against kerberos as well. Another method is
for the attacker to generate or acquire a valid ticket. The attacker then places
their username in another users .klogin file. Now the attacker should be able to
log in anywhere the target user is trusted. Kerberos will accept the attackers
ticket and treat him as if he were the target. It is also important to copy the
ticket files off to a safe location so if a user runs kdestroy the tickets won’t
be lost. Some intelligence gathering can be done with kerberos as well. Often
there will be a .klogin in the root users home directory indicating which users
are authorized to SU to root using kerberos. This gives the attacker a list of
high profile users to target with other attacks with the end goal of gaining root
access without having to use a traditional exploit.

The process of kerberos ticket stealing can be scripted an automated to harvest
hundreds or even thousands of user tickets depending on the size of the network.

A case study example of kerberos hijacking involved a target running a little
used operating system and architecture. No known exploits were available for
the auditors to use against this target. The server was also protected with TCP
wrappers to prevent unauthorized logins. However the target trusted several
large home directory servers running NFS, NIS, SSH and kerberos. The auditors
gained access to one of these home directory servers and began looking at user
known_hosts files to find a user who had a history of logging into the target.

Once a user was located their kerberos ticket was stolen and the auditors logged
into the target from the home directory server. This allowed the auditor to
bypass wrappers and avoid being flagged as a suspicious user. Once logged in
they were able to view the .klogin file for root and gain a list of privileged users
to target. These users resided on the same home directory server and so their
tickets were hijacked as well. The auditors were then able to log in to the target
and type ksu, thus gaining root.
Chapter 5

Conclusion

The techniques described in this paper demonstrate how even a fully-patched network can be compromised by a determined attacker. Professional security testers have a wide range of attacks available to them that are rarely, if ever, part of a checklist-based methodology. The best attack tool is still the human brain.
Bibliography

[1] Paterva A new train of thought
   http://www.paterno.com

   http://httpd.apache.org/docs/2.0/vhosts/mass.html

[3] hping2 Active Network Security Tool
   http://www.hping.org/

   http://insecure.org/nmap/

[5] Amap Application fingerprint mapper
   http://www.thc.org/thc-amap/

   http://www.cirt.net/code/nikto.shtml

[7] Nessus Vulnerability Scanner
   http://www.nessus.org/

   http://w3af.sourceforge.net/

[9] Blind Port Scanning
   http://insecure.org/nmap/idlescan.html

    http://archive.cert.uni-stuttgart.de/bugtraq/2003/04/msg00311.html

    http://www.oxid.it/cain.html

[12] Rogue Server Project

[14] Attacking NTLM with Precomputed Hashtables
http://uninformed.org/?v=3&a=2&t=sumry