Black Ops 2007: Design Reviewing The Web

Dan Kaminsky
Director of Penetration Testing
IOActive Inc.
Three Interesting Things

• Slirpie: Come to my website, be my VPN
• P0wf: Automagically discovering the toolkits behind the web
• LudiVu: Pretty
Intro to Slirpie: Dependence And Otherwise

• The fundamental design of the web is *late binding*
 – pieces are pulled together and assembled at runtime, independently from one another
 – As soon as independence was established, people wanted to be able to create dependencies
 • You read my page, I read your mail
 • Could be problematic 😊
The Same Origin Policy

• Basic concept
 – Independent resources (images, self-contained iframes, etc) can load across security domains
 – Dependent resources (scripts, etc) can only be dependent on each other when they’re hosted from the same origin
 • A page can read from an iframe it gives you, but not an iframe Hotmail gives you
The Obvious Bug

- Content does not come from names
 - Content comes from addresses
- DNS provides the name to address mapping
- The presumption was that this mapping would stay the same
 - Wrong
DNS Pinning

- Swapping around the DNS address ("DNS Rebinding") has been known for years
- DNS Pinning, implemented in browsers, has attempted to lock the browser to one particular address
- Old attack, old defense, nobody checked to see if it still worked…until recently
 - RSnake
 - Dan Boneh from Stanford
New Era of DNS Rebinding Attacks

• Browsers only *try* to pin DNS – they fail open rather than closed
 – More reliable that way

• The real problem is plugins, which can make connections of their own
 – Plugins don’t share the pin cache with the browser – can load the applet from one address and deliver traffic to another
Plug and Play

• What did RSnake and Dan Boneh’s team find?
 – Browser itself will provide arbitrary HTTP
 – XMLHttpRequest provides “crippled TCP”
 – Flash9 provides arbitrary TCP sockets
 – Java provides arbitrary TCP and UDP sockets

• Everything’s supposed to be bound to the site that provided the applet
 – Doesn’t work very well
What can we do with this?

• Some people don’t see the significance of this attack
 – Every once in a while, you really have to demonstrate the problem
 – This is going to be hideous to fix – lots of people need to work together – meaning this is the sort of thing that really needs a demo
 – OK this is a fun one to write
Slirpie: The Browser VPN Concentrator

Design in a nutshell:

Applications generate streams of data, which are sent to sockets.

Sockets are consumed by RAS, and turned into a stream of packets.

Packets are consumed by poptop (a PPTP daemon), and given to SLIRP, which converts them back into streams.

Streams are consumed by slirpie (a web server), and sent to any one of the major browsers. Each builds a page with Ajax, called a bucket, that creates any number of socket providers, or suckets, which ultimately send the data along.
History

• 1996: Slirp becomes popular
 – Converted **shell** accounts to **PPP** accounts
 – “Userspace NAT” – turned **packets** into **streams for sockets**
 – Less resource intensive for ISPs to support than to run apps locally
History [1]

- 2001: PPTP over SSH
 - PoPToP is the Linux PPTP server
 - Uses external PPP provider
 - Slirp could be that provider
 - Slirp over SSH could be that provider

[Image: SLIRP/PPTP over SSH: PPP over PPTP]

- PPTP: Point to Point Protocol
 - Encapsulates PPP(Layer 2) inside of a GRE(Layer 3) Tunnel, allowing TCP/UDP/ICMP(Layer 4) traffic to pass
 - Also uses 1731/TCP to initialize link
 - *Try not to wrap your brain around this*
 - Created by Microsoft as a VPN Solution
 - Version one was infamously flawed, Version two is somewhat better, but not widely trusted.
 - Client ships with and is integrated into Windows 98/Me/2000
 - Stable Interface
 - Network Isolation
 - Good UI
 - SSH cannot forward GRE internally
Six Years Later...

• Slirp turned packets into streams, then streams into sockets
 – We take the streams…and hand them to something else entirely.
Slirpie Design

• Slirpie keeps a list of streams waiting to be completed in a remote browser
 – Given by slirp

• Browser arrives and receives an AJAX page ("Bucket")
 – Requests list of all unique IP addresses that packets need to be delivered to
The DNS Two-Step

- Remember, we can’t spawn traffic directly to these IP addresses – they have to always be coming to our name
 - But we can use many subdomains
 - We can encode the desired address in the name
 - We only need to provide our own address once
 - We need to provide our proxy applet (the “sucket”)
- What to do?
 - For each IP address, register intent to create sucket. Then create iframes to a.b.c.d.notmallory.com, with a.b.c.d representing the IPv4 quad.
 - The registration will cause DNS for notmallory.com to still return the real address for notmallory.com. This will only happen once, though.
Duke Suckets

- In each IFrame, an applet lives
- When it spawns, it requests "via the Javascript bridge" a list of ports and protocols to create connections to
 - This lets it use the browsers pin cache...when it wants to 😊
 - For each successful connection, it starts proxying traffic between the connection and slirpie, using standard HTTP tunnel mechanics
- Unique sucket per IP, not per port
 - One sucket can service many sockets.
- Should destroy suckets when no longer needed – have to watch efficiency
Other Tricks

• P0wf: Passive OS Web Fingerprinting
 – Based on p0f – Passive OS Fingerprinter by Zalewski

• Most websites are made through template engines
 – Template engines provide more uniquely recognizable bits than we ever had in the stack
 • TCP/IP far more standardized than HTML
 • Template based websites are parsing far more weirdness than TCP/IP ever did
Fingerprintable Elements in HTML

- **Obvious choices**
 - Filenames (especially included scripts)
 - Cookie formats
 - URL formats
 - RPC formats (for AJAX)
 - Function names

- **Less obvious choices**
 - Script and HTML formatting
 - Comment content
 - Validation failures
 - Prominent errors
 - Page Graph
Page Graph?

- The DOM represents a Directed Graph
- Graph branches can be m-to-n compared reasonably effectively
- Depth and nature of template engines forms a fingerprint