High Insecurity:
Locks, Lies, and Liability

Marc Weber Tobias
Matt Fiddler
Agenda

• Security Standards
 • Conventional and High Security
 • UL-437
 • ANSI /BHMA (A156.5-2001)
 • ANSI (A156.30)
• LOCKS:
 – Bypass Methods
• LIES:
 – Representations
 – Design issues
• LIABILITY:
 – Legal issues
High Security Locks and Standards

- Normal vs. High Security
- Facility specifications based on UL/ANSI
- Protection: Forced, Covert, Key control
- Protection of high value and critical targets
UL-437 Attack Resistance
(Door locks and Cylinders)

<table>
<thead>
<tr>
<th>Attack Type</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picking</td>
<td>10 Minutes</td>
</tr>
<tr>
<td>Impressioning</td>
<td>10 Minutes</td>
</tr>
<tr>
<td>Forcing</td>
<td>5 Minutes</td>
</tr>
<tr>
<td>Drilling</td>
<td>5 Minutes</td>
</tr>
<tr>
<td>Sawing</td>
<td>5 Minutes</td>
</tr>
<tr>
<td>Prying</td>
<td>5 Minutes</td>
</tr>
<tr>
<td>Pulling</td>
<td>5 Minutes</td>
</tr>
<tr>
<td>Driving</td>
<td>5 Minutes</td>
</tr>
</tbody>
</table>
Standards (ANSI/BHMA)

• ANSI 156.5
 – Auxiliary Locks
 – Graded 1-3 (1=highest rating)
• ANSI 156.30
 – High Security Cylinders
 – Graded A-C (A=highest rating)
Standards (ANSI A156.5)

Security Tests

- Impact
- Tension
- Torque
- Impact
- Sawing
- Pressure
- Tensile

In addition to the above requirements all cylinders must meet all DRILLING(5min) and PICKING(10min) requirements of UL-437
Standards (ANSI A156.30)
High Security Cylinders

• Key Control (ratings are cumulative)
 – C - Manufacturer restricted blanks
 – B - Blanks protected by law
 – A - Authorization required
• Forced Entry Extensions (Above A156.5)
Standards (ANSI A156.30)

- Pick Resistance (Cumulative)
 C: Minimum of 2 Security Pins
 Paracentric Keyway
 Minimum of one bore depth designed to prevent overlifting
 B: Meets all levels of C plus UL-437 for pick resistance (10 min)
 A: Resist picking for 15 min as tested by 5 “ALOA Certified” Locksmiths with “commercially” available tools
What is “High Security”?
Standards (UL-437)

- Cabinet Locks
- Door Locks
- Locking Cylinder
- Security Containers
- Two-Key Locks
UL-437

Higher Security: Not High Security

Tests Include:
- Endurance
- Attack Resistance
- Corrosion
- Material Strength
UL-437 Attack Resistance

• “A product shall not open or be compromised as a result of application of the tools and methods described…”
 – Common hand tools
 – Hand or portable electronic tools
 – Saw blades
 – Puller mechanisms
 – Picking tools
UL-437 Tools (Hand or Electric)

Forced Entry
- Pry bars (up to 3ft)
- Chisels
- Screwdrivers (max 15in)
- Hammers (max 3lbs)
- Wrenches
- Pliers
- Drills
- Saw blades
- Pulling tools

Covert Entry
- Picking
- Impressioning
LOCKS

- Drilling
- Pulling
- Prying
- Sawing
- Picking
- Impressioning
Forced Entry - Drilling
Drilling a standard cylinder and high security cylinder
Forced Entry - Pulling
PULLING A MUL-T-LOCK

• Use of a puller on the plug
Forced Entry - Prying
Forced Entry - Sawing
Covert Entry - Picking
Covert Entry - Impressioning
Common Hand Tools
LIES

- Representations by lock manufacturers
- Design issues and failures
- Bypass methods not contemplated
Representations by Manufacturers

- Locks are secure
- High security v. standard locks
- Implied representations
- Know or should have known of problems
- Meet specifications?
- Need truth in packaging and advertising
Design Issues

• Failure of imagination
• Design engineer problem
• Key never unlocks the lock
• Moshe Dyan problem
Mechanical Bypass

- Defeating locks in less than a minute
- Not included in standards
 - Not forced or covert entry
- Many certified locks can be compromised
- Public is misled
Mechanical Bypass: Another Method of Entry

- Wires and shims
- Vibration, shock, bumping
- Air pressure
- Magnetics
- Breaking of internal components
- Radio Frequency energy
- Temperature
Failure of Imagination

- Mechanical bypass
- Forced entry techniques
- Covert entry techniques
- Key control compromise
 - Manufacturers cannot find the vulnerabilities
Design Defects

• Failure to understand laws of physics
• Failure to understand methods of entry
• Failure to imagine
 – Generally simple design failures
 – Directly affect the security of the lock
 – Affect any security ratings
 – Mislead the consumer
Case Examples

- EI Safe (UnSafe) hotel safe
- File cabinet locks
- Targus Defcon CL
- Padlocks: Master and Corbin Sesamee
- Codelock electronic lock
- Kwikset
- Medeco
El Safe in room hotel safe

• Security = gear drive in back of door
File Cabinet Locks

- Security = spring loaded locking dog
Targus Defcon CL

• Piece of plastic to decode gate position
Padlocks

- Master combination
- Corbin Sesamee
Codelocks CL1000

- Security = spring loaded blocking tab
Codelocks 5000
Moshe Dyan Problem

“The road from Damascus to Tel Aviv also runs from Tel Aviv to Damascus”

• Drain hole out: wire in
Kwikset Maximum Security

- Defective design
- No real security
- Open in under 30 seconds
- No apparent evidence of entry
Kwikset Ultra Max

- No real security
- Defective design
Common Myths

- Key Control
- Bumping
- Picking
- Mechanical Bypass
MEDECO: The High Security Cylinder

• Protects high value and critical targets
• For 35 years: THE lock to attack
• UL437 and ANSI 156.30 rated
• Advertising Statements: Consider in context
 – “bump proof”
 – Highly pick resistant
 – Key control
 – Secure
MEDECO “CAVEATS”

- High quality locks and hardware
- Secure for most locations and uses
- May be vulnerable for high value targets
- User needs to assess security
- Security depends upon many factors
 - Location and value of target
 - Expected sophistication of attack
 - Master key or non-master key system
MEDECO m³

- Replaced the Biaxial in 2005 when patent expired
- Biaxial design with slider
- Three levels of security:
 - Pin tumblers elevated to shear line
 - Pin tumblers rotated to correct angles
 - Slider moved to correct position
Medeco m³ Design
Common Myth #1: Key Control

- UL 437: No key control criteria
- ANSI 156.30
 - Patent protected blanks
 - Cannot replicate the blanks
 - Cannot duplicate the keys
 - Factory control of keys produced by code
Medeco Key Control

- Biaxial patent expired in 2005
- Replaced with m^3
- m^3 is protected but can be simulated
- Restricted keyways can be bypassed
- Security feature of m^3 can be bypassed which does not infringe on patent
Medeco m³ Meets the Paper Clip

“Michaud M3 Degrade Attack”
Common Myth #2: Bumping

- Some High security locks can be bumped open
 - Locks can be bumped: Not all but many
 - Depends on many factors
 - Sidebar codes must be known or simulated
 - Patent filing for technique to bump
Medeco Not Bump-proof

• Medeco:
 – “Our locks are bump proof!”
 – “Our locks are virtually bump proof!”

Virtually bump proof = virtual reality
Virtual Reality

They can't really bump and pick our locks... can they?

Dude, these glasses rock!
Common Myth #3: Picking

- Special pick and decoder tools developed
- Medeco locks can be extremely difficult to pick because of pin rotation
- A target for 35 years
- Attempts largely unsuccessful
- Caveats
Picking Medeco Locks

• Medeco locks can be picked with conventional tools with a special technique in patent filing
• High percentage of these locks can be picked
Common Myth #4: Hardware Bypass

- Kwikset UltraMax and others
- Medeco hardware security: Is it really secure?
- Example: Deadbolts - A failure of imagination
- The entire security is based upon two small components

“The key never unlocks the lock!”
Medeco Security: Two Screws Loose!
Medeco Security: Two Screws Loose!

- Medeco Deadbolt Lock
 - Security is based upon two tiny screws
 - Can be compromised in under 30 seconds
 - Will not meet high security standards
 - UL and ANSI does not address this issue
 - Bypass of deadbolt mechanism
 - Design incompetence
LIABILITY

• Defective or deficient products
• Negligent designs
• Misrepresentations in packaging
• Manufacturers are experts
• Federal statutes
• Fiduciary duty to customers
 – DCR v. PEAK
NEEDED: Real World Testing

- Propose Security Laboratories
 - Security professionals
 - Manufacturers
 - Law enforcement
 - Locksmiths
 - Hackers: Vulnerability Geeks
 - Why we need Physical Security Hackers
SECURITY LABORATORIES

- Disclosure Policy
 - Product beta v. introduced
 - Can the problem be fixed
 - Who’s at risk
 - Notify manufacturer: recall or replace
 - How many locks are affected
 - Level of risk
 - National security issues?
DISCLOSURE CRITERIA

• Public or private disclosure
• Level of threat
• Likelihood of exploit
• Market penetration
• Level of disclosure
 – Security issues only
 – Detail the vulnerability
 – Demonstrate the vulnerability
Product Testing

- For members
- For non-members
- Confidentiality
- Privilege
- Propose new designs
Feedback

- Idea of joint cooperation
- Structure of Security Laboratories
- Disclosure policy
- Use of hackers
Thank You

Marc Weber Tobias
mwtobias@security.org

Matt Fiddler
mjfiddler@gmail.com

Web: http://security.org
Blog: http://in.security.org