VLANs Layer 2 Attacks:

Their Relevance and Their Kryptonite
VLAN Layer 2 Attacks

- Security is only as strong as the weakest link
- Layer 2 attacks are timeworn but still relevant in today's networking environment
- Crime and security survey show different types of attacks for the year of 2007. CSI / FBI surveys also show that 9 of 19 types of attacks could target routers and switches
VLAN Layer 2 Attacks

Equipment

- Cisco 3600, 2600 routers
- Cisco 2900, 3500, 4006 switches
- Wifi Netgear & Cisco-Linksys

Attacks

- ARP Attacks
- MAC Flooding Attack/ CAM Table Overflow Attacks
- DHCP Starvation Attack
- CDP Attack
- Spanning-Tree Attack
- Multicast Brute Force
- VLAN Trunking Protocol Attack
- Private VLAN Attack
- VLAN Hopping Attack
- Double-Encapsulated 802.1Q/Nested VLAN Attack
- VLAN Management Policy server VMPS/ VLAN Query Protocol VQP Attack

Tools

- Scapy
- Yersinia
- Macof
- TCPDump
- Cain & Abel
- EtterCap
- Ethereal
VLAN Layer 2 Attacks

How to get a lab for testing purposes

Cisco Lab Setup

K & T :: IGS :: MAF
VLAN Layer 2 Attacks

- Just ask HD Moore’s ISP
- Someone was ARP poisoning the IP address

Example: Metasploit.com ISP PIMPED!

```
13:04:39.768055 00:15:f2:4b:cd:3a > 00:15:f2:4b:d0:c9, ethertype ARP (0x0806), length 60: arp reply 216.75.15.1 is-at 00:15:f2:4b:cd:3a
13:04:40.397616 00:15:f2:4b:cd:3a > 00:15:f2:4b:d0:c9, ethertype ARP (0x0806), length 60: arp reply 216.75.15.1 is-at 00:05:dc:0c:84:00
13:04:40.397686 00:15:f2:4b:cd:3a > 00:15:f2:4b:d0:c9, ethertype ARP (0x0806), length 60: arp reply 216.75.15.1 is-at 00:15:f2:4b:cd:3a
```

K & T :: IGS :: MAF
ARP Poisoning: Simple and effective
- ARP may be used most but least respected
- 250 other servers are hosted on the same local network at the same service provider metasploit.com that were still vulnerable a month ago
- No authentication built into protocol
- Information leakage
VLAN Layer 2 Attacks

Normal Communication

Server A

MITM

Server A

ATTACKER

Server B
ARP attack demo

Example:

1st of its kind. Human ARP attack
Port Security

- Non changing ARP entries (don’t waste your time)
- DHCP Snooping (the network device maintains a record of the MAC address that are connected to ARP port)
- Arpwatch (listens to arp replies)
- ArpON
MAC Flooding/CAM Table Overflow Attack

- MAC flooding attacks are often ignored in the corporate environment.
- MAC flooding – switch ports act like a hub when overloaded
- CAM table - table fills and the switch begins to echo any received frame to all port (traffic bleeds out).

Tools to perform this attack:
- Dsniff
- Macof
- Cain & Able
- Ettercap
VLAN Layer 2 Attacks

MAC Flooding/CAM Table Overflow Attack

Macof at work flooding the Cisco switch
VLAN Layer 2 Attacks

Switch is bleeding out the traffic

<table>
<thead>
<tr>
<th>Timestamp</th>
<th>FTP server</th>
<th>Client</th>
<th>Username</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/05/2008 - 20:42:11</td>
<td>192.168.1.3</td>
<td>192.168.1.6</td>
<td>sp00k</td>
<td>sp00k1</td>
</tr>
<tr>
<td>27/05/2008 - 20:50:38</td>
<td>192.168.1.3</td>
<td>192.168.1.6</td>
<td>sp00k</td>
<td>sp00k1</td>
</tr>
</tbody>
</table>
VLAN Layer 2 Attacks

- Same as the ARP attack mitigation
- Limit amount of MAC addresses to be learned / port.
- Static MAC addresses configuration (not scalable but most secure).
- A DHCP Scope exhaustion (client spoofs other clients)
- Installation of a rogue DHCP server
- Tools
 - Yersinia
 - Gobbler
VLAN Layer 2 Attacks

DHCP Starvation Attacks with Yersinia
Possible to setup a rogue DHCP server. The attacker may hijack traffic and this can have devastating results.
VLAN Layer 2 Attacks

- Demo Time
 - DHCP Starvation Demo
By limiting the number of MAC addresses on a switch port will reduce the risk of DHCP starvation attacks.

DHCP Snooping – monitors and restricts DHCP
Cisco Discovery Protocol (CDP) Attack

- Cisco Discovery Protocol allows Cisco devices to communicate amongst one another (IP address, software version, router model, etc) CDP is clear text and unauthenticated.

- CDP Denial Of Service (Many companies do not upgrade their IOS often enough to 12.2.x and current versions of CatOS)

- CDP cache overflow – a software bug can reset the switch

- Power exhaustion – claiming to be a VoIP phone an attacker can reserve electrical power

- CDP cache pollution – CDP table becomes unusable because it contains a lot of false information
VLAN Layer 2 Attacks

Cisco Discovery Protocol (CDP) Attack

```
cat4006 - HyperTerminal

Ver 12.0(7)T
Copyright (c) 1986-2001 by Cisco Systems, Inc.
ALL RIGHTS RESERVED

Connected 0:02:22
Auto detect 9600 B-N-1

<table>
<thead>
<tr>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to up</td>
</tr>
<tr>
<td>FastEthernet0/2</td>
<td>Changed state to down</td>
</tr>
</tbody>
</table>

```

```c
#define _LINEPROTO_arp 1
#define _LINEPROTO İllegal 2
#define _LINEPROTO up 3
#define _LINEPROTO down 4
```

Low on memory; try again later.
```
- Turn the sh*t off
- Router  # no cdp enable
- Switch (enable) set cdp disable 1/23
- The question is why is CDP enabled on a network? IP phones are popular, CDP is used in order to determine the actual power requirement for the phone.
VLAN Layer 2 Attacks

**Spanning Tree Protocol (STP) Attack**

- STP Attack – involves an attacker spoofing the root bridge in the topology

- **Attacks**
  - Sending RAW Configuration BPDU
  - Sending RAW TCN BPDU
  - DoS sending RAW Configuration BPDU
  - DoS Sending RAW TCN BPDU
  - Claiming Root Role
  - Claiming Other Role
  - Claiming Root Role Dual-Home (MITM)
VLAN Layer 2 Attacks

**Spanning Tree Protocol (STP) Attack**

- STP sending conf BPDUs DoS
Spanning tree functions must be disabled on all user interfaces but maintained for Network to Network Interfaces to avoid a network loop.

Enable **root guard** on Cisco equipment, or BPDU guard on users ports to disable the thus of priority zero and hence becoming a root bridge.

---

**Example:**

```
spanning-tree portfast bpdufilter
interface fa0/10
spanning-tree guard root
```
This involves spoofing, in rapid succession, a series of multicast frames.

Frames leak into other VLANs if the routing mechanism in place between the VLANs.

Injecting packets into multicast also can cause a DoS scenario.
- Buy more capable switches!
- The Layer 2 multicast packets should be constrained within the ingress VLAN. No packets should be 'leaked' to other VLANs.
VTP has the ability to add and remove VLAN from the network. (Someone will get fired if this happens!)

VTP involves a station sending VTP messages through the network, advertising that there are no VLANs.

All client VTP switches erase their VLANs once receiving the message.

Attacks:

- Sending VTP Packet
- Deleting all VTP VLANs
- Deleting one VLAN
- Adding one VLAN
If you like your job don’t use VTP!
- Private VLANs only isolate traffic at Layer 2
- Forward all traffic via Layer 3 to get to the private VLAN
- **Scapy** is your best friend!
VLAN Layer 2 Attacks

Private VLAN Attack

Ensure the Configuration Can Not Be Accessed and Modified

Protect Against DoS Attacks or Limited Resource Contention

Gigabit Ethernet Transport

Authenticate Customer UNI

Protect from Compromised U-PE

Untrusted

Customer Protection

Mostly Trusted

Network Protection

Trusted
Configure VLAN access lists on the router interface

Example:

```bash
vlan access-map map_name (0-65535)
```
- Attacker configures a system to spoof itself as a switch by emulating either 802.1q or ISL.
- Another variation involves tagging transmitted frames with two 802.1q headers.
VLAN Layer 2 Attacks

VLAN Hopping Attack

Diagram showing a network with VLANs 200, 201, 202, 203, and an Internet connection. The network includes a switch, FWSM, and several VLANs connected to different departments such as Inside, HR, and DMZ.
- Disable auto-trunking

- Unused ports, other than trunk port should be removed.

- For backbone switch to switch connections, explicitly configure trunking

- Do not use the user native VLAN as the trunk port native VLAN

- Do not use VLAN 1 as the switch management VLAN
VLAN numbers and identification are carried in a special extended format.

Instead, outside of a switch, the tagging rules are dictated by standards such as ISL or 802.1Q.

This allows the forwarding path to maintain VLAN isolation from end to end without loss of information.
VLAN Layer 2 Attacks **Double Encapsulation 802.1q and ISL Tagging Attack**
VLAN Layer 2 Attacks

- Ensure that the native VLAN is not assigned to any port
- Force all traffic on the trunk to always carry a tag
The VLAN Management Policy Server is for assigning dynamically created VLANs based on MAC/IP address or HTTP authentication (URT). VMPS is a centralized host information database which is can be downloaded to servers via TFTP.

All VMPS traffic is in clear text, unauthenticated and over UDP, and may be misused for hijacking purposes.
VMPS traffic shall be transmitted on a Out Of Band basis (user traffic separate network) or not used.
- Manage switches in as secure a manner as possible (SSH, OOB, permit lists, etc.)
- Always use a dedicated VLAN ID for all trunk ports. Be paranoid: do not use VLAN 1 for anything.
- Deploy port security.
- Set users ports to a non trunking state.
- Deploy port-security whenever possible for user ports.
- Selectively use SNMP and treat community strings like root passwords.
- Have a plan for the ARP security issues in your network.
- Use private VLANS where appropriate to further divide L2 networks. Disable all unused ports and put them in an unused VLAN.
- Consider 802.1X for the future and ARP inspection
- Use BPDU guard, Root guard
- Disable CDP whenever possible
- Ensure DHCP attack prevention