Stealing The Internet

An Internet-Scale Man In The Middle Attack

Defcon 16, Las Vegas, NV - August 10th, 2008

Alex Pilosov – Pure Science
Chairman of IP Hijacking BOF
ex-moderator of NANOG mailing list
alex@pilosoft.com

Tony Kapela – Public Speaking Skills
CIO of IP Hijacking BOF
tk@5ninesdata.com
Why Should You Care?

• Because your inbound traffic can be passively intercepted
• Because your outbound traffic to specific destinations can also be intercepted
• Because your data can be stored, dropped, filtered, mutilated, spindled, or modified
• Because this cannot be solved without provider cooperation
• Because it’s unlikely to be noticed, unless you’re looking for it
Agenda

• BGP & Internet 101
• Old Hijackings
• The main monkey business
 – MITM method, explained
 – Graphs, etc
 – Live Demo
BGP 101

How is the Internet ‘glued’ together?

• No central “core”
• Individual networks (identified by ASN) interconnect and “announce” IP space to each other
• Announcement contains IP prefix, AS-PATH, communities, other attributes
• AS-PATH is a list of who has passed the announcement along; used to avoid loops (important for our method)
• Fundamental tenet in IP routing: More-specific prefixes will win – e.g. 10.0.0.0/24 wins over 10.0.0.0/8
..if we had to whiteboard it
Network Relationship Norms

- **Peer:** No money changes hands, routes are not redistributed to transits and other peers – 1:1 relationship
- **Customer:** Pays transit provider to accept their announcement, sends routes to peers and transits
On Prefixes…

• Internet routing is inherently trust-based
 – No “chain of trust” in IP assignments
• ICANN assigns space to Regional Internet Registries (RIRs - ARIN/RIPE/AFRINIC)
• RIRs assign to ISPs or LIRs (in RIPE region)
• No association between ASN and IP for most assignments (except RIPE)
State The problem
Various levels of sophistication in Route/Prefix Filtering

• Customer:
 – Often unfiltered BGP: max-prefix and sometimes AS-PATH
 – Smaller carriers and smaller customers – static prefix-list, emails or phone calls to update
 • Verification by “whois”
 – Larger carriers: IRR-sourced inter-AS filters

• Peer:
 – Typically none beyond max-prefix and scripts to complain when announcing something they shouldn’t (rare)
 – Many don’t even filter their own internal network routes coming from external peers
The IRR (Internet Routing Registry)
A Modest Proposal

• Way for ISP’s to register their routes and routing policy
• Distributed servers that mirror each other
• Filtering based on IRR will prevent some ‘accidental’ hijackings

• Caveats
 – Your routers might not scale as well when crunching 100k entry prefix-lists per-peer, for all peers
 – Full of cruft - no janitors
 – Insecure - anyone can register (nearly) any route
An IRR Update
...Which Should Have Been Questioned

From: db-admin@altdb.net
To: xxx@wyltk-llc.com
ReplyTo: db-admin@altdb.net
Subject: Forwarded mail.... (fwd)
Sent: Aug 7, 2008 9:48 PM

Your transaction has been processed by the IRRd routing registry system.

Diagnostic output:

--

The submission contained the following mail headers:
- From: xxx@wyltk-llc.com
- Subject: Forwarded mail.... (fwd)
- Date: Thu, 7 Aug 2008 21:48:53 -0400 (EDT)
- Msg-Id: <Pine.LNX.xxx@wyltk-llc.com>

ADD OK: [route] 24.120.56.0/24 AS26627

--

If you have any questions about ALTDB, please send mail to db-admin@altdb.net.
Traditional Hijacking Uses

• Non-Malicious use: was popular in 2001, faster than getting IPs legitimately from ARIN

• Fly-by spammers: Announce space, spam, withdraw, avoid abuse complaints

• Malicious DoS or outage - silence your competitors

• Target impersonation - could hijack 128.121.146.0/24 (twitter) and put up something else
Criminality

• If nobody is using it, is it really illegal?
• IP prefix is just a number
• No prosecutions for non-malicious announcements that we are aware of
• Worst case scenario for non-malicious hijack: ARIN/RIPE pull PTR records and transits shut you off (eventually)
How-To Hijack

• Full hijacking, apparent authority to announce
 – This was cool in 2001
 – Find IP Network (using whois) with contact email address in @hotmail.com or at domain that has expired
 – Register domain/email
 – Change contact

• Or just announce the network since nobody is filtering anyway
 – Upstream providers too busy & big to care
 – You’re paying them to accept routes, so they do
Historical Hijackings

• AS7007 – ’97, accidental bgp-rip-bgp redistribution broke Internet (tens of thousands of new announcements filled router memory, etc)
• 146.20/16 – Erie Forge and Steel (how apropos)
• 166.188/16 – Carabineros De Chile (Chile Police) – hijacked twice, by registered “Carabineros De Chile LLC, Nevada Corporation"
• More details available on completewhois.com
• Accidental hijackings happen frequently – low chance of getting caught
02/08 Youtube Hijack Saga

• YouTube announces 5 prefixes:
 – A /19, /20, /22, and two /24s
 – The /22 is 208.65.152.0/22

• Pakistan’s government decides to block YouTube

• Pakistan Telecom internally nails up a more specific route (208.65.153.0/24) out of YouTube’s /22 to null0 (the routers discard interface)

• Somehow redists from static → bgp, then to PCCW

• Upstream provider sends routes to everyone else…

• Most of the net now goes to Pakistan for YouTube, gets nothing!

• YouTube responds by announcing both the /24 and two more specific /25s, with partial success

• PCCW turns off Pakistan Telecom peering two hours later

• 3 to 5 minutes afterward, global bgp table is clean again
Corrigendum- Most Urgent

GOVERNMENT OF PAKISTAN
PAKISTAN TELECOMMUNICATION AUTHORITY
ZONAL OFFICE PESHAWAR
Plot-11, Sector A-3, Phase-V, Hayatabad, Peshawar.
Ph: 091-9217279-5829177 Fax: 091-9217254
www.pta.gov.pk

NWFP-33-16 (BW)/06/PTA

Subject: Blocking of Offensive Website

Reference: This office letter of even number dated 22.02.2008.

I am directed to request all ISPs to immediately block access to the following website

URL: http://www.youtube.com/watch?v=o3s8jtvvg00

IPs: 208.65.153.238, 208.65.153.253, 208.65.153.251

Compliance report should reach this office through return fax or at email peshawar@pta.gov.pk today please.
Of Interest…
IP Hijacking BoF

• Un-official event at NANOG conference
• We test security of Internet routing infrastructure
• Recent exercises:
 – Hijacked 1.0.0.0/8: 90% success
 – Hijacked 146.20.0.0/16: 95% success
 – Attempted to announce networks longer than /24: from /25 down to /32 with cooperation of large CDN’s. 40% successful overall
Routing Security Is Complicated

• No answer yet, due to lack of chain of trust from ICANN on down
• “Weakest link” problem: Until everyone filters everyone perfectly, this door is still open
• Best practice today is “Alerting” systems that look for rogue announcements (PHAS, RIPE MyASN, Renesys, etc)
• Register your AS and your prefix in RIR (no immediate effect, but eventually someone will use them)
• No anonymity – if you hijack, everyone knows it’s you (due to AS-PATH)
• If things still work, who complains?
How To Resolve A Hijacking

• Once rogue announcement is identified, work begins. Contact the upstreams and scream.
 – May take minutes, hours (if you are Youtube-sized), or possibly days

• About as easy as getting DDoS stopped (or not)
What This Means

• Rootkits + 0day → rogue announcements → Man-in-middle attacks, with our clues applied
 – No need for three-way-handshake when you’re in-line
 – Nearly invisible exploitation potential, globally
• Endpoint enumeration - direct discovery of who and what your network talks to
• Can be accomplished globally, any-to-any
• How would you know if this isn’t happening right now to your traffic at DEFCON?
BGP MITM Hijack Concept

• We originate the route like we always did
 – Win through usual means (prefix length, shorter as-path w/ several origin points, etc)
 • “Win” is some definition of “most of the internet chooses your route”

• We return the packets somehow
 – Coordinating delivery was non-trivial
 – Vpn/tunnel involve untenable coordination at target

• Then it clicked – use the Internet itself as reply path, but how?
BGP MITM Setup

1. Traceroute & plan reply path to target
2. Note the ASN’s seen towards target from traceroute & bgp table on your router
3. Apply as-path prepends naming each of the ASN’s intended for reply path
4. Nail up static routes towards the next-hop of the first AS in reply path
5. Done
Target ASN 200 originates 10.10.220.0/22, sends announcements to AS20 and AS30. The Internet is converged towards a valid route and converging.
ASN 100's FIB shows a route for 10.10.200.0/22 via AS10

We then build our as-path prepend list to include AS 10, 20, and 200

BGP MITM – Plan reply path
BGP MITM – Setup Routes

10.10.220.0/24 is announced with a route-map:
route-map hijacked permit 10
match ip address prefix-list jacked
set as-path prepend 10 20 200

Then, install static route in AS100 for 10.10.220.0/24 to AS10’s link:
ip route 10.10.220.0 255.255.255.0 4.3.2.1
Anonymzing The Hijacker

• We adjust TTL of packets in transit
• Effectively ‘hides’ the IP devices handling the hijacked inbound traffic (ttl additive)
• Also hides the ‘outbound’ networks towards the target (ttl additive)
• Result: presence of the hijacker isn’t revealed
Without TTL adjustment

2 12.87.94.9 [AS 7018] 4 msec 4 msec 8 msec
3 tbr1.cgcil.ip.att.net (12.122.99.38) [AS 7018] 4 msec 8 msec 4 msec
4 ggr2.cgcil.ip.att.net (12.123.6.29) [AS 7018] 8 msec 4 msec 8 msec
5 192.205.35.42 [AS 7018] 4 msec 8 msec 4 msec
6 cr2-loopback.chd.savvis.net (208.172.2.71) [AS 3561] 24 msec 16 msec 28 msec
7 cr2-pos-0-0-5-0.NewYork.savvis.net (204.70.192.110) [AS 3561] 28 msec 28 msec 28 msec
8 204.70.196.70 [AS 3561] 28 msec 32 msec 32 msec
9 208.175.194.10 [AS 3561] 28 msec 32 msec 32 msec
11 tge2-3-103.ar1.nyc3.us.nlayer.net (69.31.95.97) [AS 4436] 32 msec 32 msec 32 msec
12 * * * (missing from trace, 198.32.160.134 – exchange point)
13 tge1-2.fr4.ord.llnw.net (69.28.171.193) [AS 22822] 32 msec 32 msec 40 msec
14 ve6.fr3.ord.llnw.net (69.28.172.41) [AS 22822] 36 msec 32 msec 40 msec
15 tge1-3.fr4.sjc.llnw.net (69.28.171.66) [AS 22822] 84 msec 84 msec 84 msec
16 ve5.fr3.sjc.llnw.net (69.28.171.209) [AS 22822] 96 msec 96 msec 80 msec
17 tge1-1.fr4.lax.llnw.net (69.28.171.117) [AS 22822] 88 msec 92 msec 92 msec
18 tge2-4.fr3.las.llnw.net (69.28.172.85) [AS 22822] 96 msec 96 msec 100 msec
19 switch.ge3-1.fr3.las.llnw.net (208.111.176.2) [AS 22822] 84 msec 88 msec 88 msec
20 gig5-1.esw03.las.switchcommgroup.com (66.209.64.186) [AS 23005] 84 msec 88 msec 88 msec
21 66.209.64.85 [AS 23005] 88 msec 88 msec 88 msec
22 gig0-2.esw07.las.switchcommgroup.com (66.209.64.178) [AS 23005] 88 msec 88 msec 88 msec
23 acs-wireless.demarc.switchcommgroup.com (66.209.64.70) [AS 23005] 88 msec 84 msec 84 msec
With TTL Adjustments

2 12.87.94.9 [AS 7018] 8 msec 8 msec 4 msec
3 tbr1.cgci.ip.att.net (12.122.99.38) [AS 7018] 4 msec 8 msec 8 msec
4 ggr2.cgci.ip.att.net (12.123.6.29) [AS 7018] 4 msec 8 msec 4 msec
5 192.205.35.42 [AS 7018] 8 msec 4 msec 8 msec
6 cr2-loopback.chd.savvis.net (208.172.2.71) [AS 3561] 16 msec 12 msec *
7 cr2-pos-0-0-5-0.NewYork.savvis.net (204.70.192.110) [AS 3561] 28 msec 32 msec 32 msec
8 204.70.196.70 [AS 3561] 28 msec 32 msec 32 msec
9 208.175.194.10 [AS 3561] 32 msec 32 msec 32 msec
10 gig5-1.esw03.las.switchcommgroup.com (66.209.64.186) [AS 23005] 88 msec 88 msec 84 msec
11 66.209.64.85 [AS 23005] 88 msec 88 msec 88 msec
12 gig0-2.esw07.las.switchcommgroup.com (66.209.64.178) [AS 23005] 84 msec 84 msec 88 msec
13 acs-wireless.demarc.switchcommgroup.com (66.209.64.70) [AS 23005] 88 msec 88 msec 88 msec
Compare Original BGP & Route Path

Original:

2 12.87.94.9 [AS 7018] 8 msec 8 msec 4 msec
3 tbr1.cgci1.ip.att.net (12.122.99.38) [AS 7018] 8 msec 8 msec 8 msec
4 12.122.99.17 [AS 7018] 8 msec 4 msec 8 msec
5 12.86.156.10 [AS 7018] 12 msec 8 msec 4 msec
6 tge1-3.fr4.sjc.llnw.net (69.28.171.66) [AS 22822] 68 msec 56 msec 68 msec
7 ve5.fr3.sjc.llnw.net (69.28.171.209) [AS 22822] 56 msec 68 msec 56 msec
8 tge1-1.fr4.lax.llnw.net (69.28.171.117) [AS 22822] 64 msec 64 msec 72 msec
9 tge2-4.fr3.las.llnw.net (69.28.172.85) [AS 22822] 68 msec 72 msec 72 msec
10 switch.ge3-1.fr3.las.llnw.net (208.111.176.2) [AS 22822] 60 msec 60 msec 60 msec
11 gig5-1.esw03.las.switchcommgroup.com (66.209.64.186) [AS 23005] 60 msec 60 msec 60 msec
12 66.209.64.85 [AS 23005] 64 msec 60 msec 60 msec
13 gig0-2.esw07.las.switchcommgroup.com (66.209.64.178) [AS 23005] 60 msec 64 msec 60 msec
14 acs-wireless.demarc.switchcommgroup.com (66.209.64.70) [AS 23005] 60 msec 60 msec 60 msec

Hijacked:

2 12.87.94.9 [AS 7018] 8 msec 8 msec 4 msec
3 tbr1.cgci1.ip.att.net (12.122.99.38) [AS 7018] 4 msec 8 msec 8 msec
4 ggr2.cgci1.ip.att.net (12.123.6.29) [AS 7018] 4 msec 8 msec 4 msec
5 192.205.35.42 [AS 7018] 8 msec 4 msec 8 msec
6 cr2-loopback.chd.savvis.net (208.172.2.71) [AS 3561] 16 msec 12 msec *
7 cr2-pos-0-0-5-0.NewYork.savvis.net (204.70.192.110) [AS 3561] 28 msec 32 msec 32 msec
8 204.70.196.70 [AS 3561] 28 msec 32 msec 32 msec
9 208.175.194.10 [AS 3561] 32 msec 32 msec 32 msec
10 gig5-1.esw03.las.switchcommgroup.com (66.209.64.186) [AS 23005] 88 msec 88 msec 84 msec
11 66.209.64.85 [AS 23005] 88 msec 88 msec 88 msec
12 gig0-2.esw07.las.switchcommgroup.com (66.209.64.178) [AS 23005] 84 msec 84 msec 88 msec
13 acs-wireless.demarc.switchcommgroup.com (66.209.64.70) [AS 23005] 88 msec 88 msec 88 msec
In conclusion

• We learned that any arbitrary prefix can be hijacked, without breaking end-to-end
• We saw it can happen nearly invisibly
• We noted the BGP as-path does reveal the attacker
• Shields up; filter your customers.
Thanks & Praise

• Felix "FX" Lindner
• Jay Beale
• Dan Kaminsky
• Defcon Speaker Goons & Staff
• Todd Underwood