Agenda

• GIS
• Geospatial Intrusion Detection implementations
• Geospatial Intrusion Detection methodology
• Accuracy of IP -> lat/long translation
• Okay…so how do I beat it?
• Q&A
GIS

• GIS (Geographic Information Systems): computer based methodology to collect, store, manipulate, retrieve, display and analyze georeferenced data.
 – GoogleEarth
 – ESRI
 – Intergraph
 – GRASS
GIS

• Traditional GIS tools focused more on environmental issues
• These days thanks to GoogleEarth and/or GoogleMaps the average Internet user is starting to be exposed to the power that mapping software unleashes.
 – Track a cell phone (cell tower triangulation)
 – Track flights in mid-air!!!
Cell Phone
Track Any Flight
Where has IT security and mapping collided?

• Multiple security firms have implemented GIS tools in their products (in varying degrees)
 – MeerCat (Secure Decisions)
 – VisCat (ETRI)
 – GeoSWAT
MeerCat

Image Courtesy: John Goodall
Secure Decisions
GeoSWAT
Geospatial Intrusion Detection

- Goal: find a direct correlation between externally based network alerts by plotting their source locations on a geographic map
How does it work?

• High-level ‘roadmap’:
 1. Plot rolling time period (1 week/2 weeks/4 weeks)
 2. Eliminate ‘friendlies’ to reduce IDS false positives
 2.1 Geographically plot remote branches, SOHO, business partners locations by street address (very accurate in GoogleEarth)
 2.2 Create an IDS alert that is triggered when a customer authenticates to a website
3. Run a clustering algorithm on plotted data
 • There are several different clustering algorithms to choose from:
 – Poisson, nearest-neighbor, Moran’s I Index, Ripley’s K Function, Getis-Ord
4. Extract network alerts within identified ‘hot-spot’

5. Run a weight calculating algorithm to evaluate if there is a relationship between alerts
 • Correlating elements in an alert
 – Alert severity
 – Destination ports
 – Timestamp
1. Plot rolling timeseries

14 day intervals (the slow probe theory)
2. Eliminate ‘friendlies’

Map Legend

⚠️ = Source IDS Alert

🟢 = Remote Offices or Telecommuting Residences

Depending on your risk comfort abilities this would eliminate ~30% of potential false positives.
3. Run a GIS clustering algorithm

![Image of GIS clustering algorithm output]

Alerts and Poisson Points with Buffers

Draft - March 21, 2008
4. Extract ‘hot-spot’ network alerts
5. Run a weight calculating algorithm to evaluate if there is a relationship between alerts

- Insert image(s) later...
Accuracy translation

• Vendors
 – IP2Location
 – MaxMind
 – Quova (wireless capabilities)

• How is the translation calculated?
 – Domain scrapping
 – Compare Traceroutes
 – Strategic partnerships with ISPs
 – Strategic partnerships with downloading FTP sites
Example of ‘less’ accurate translation
Okay...how do I beat it?

• As with many (if not all) defenses there are always loopholes:
 – Most scanning/enumeration tools primarily do sequential scans of IP address – DO NOT USE SEQUENTIAL IPs TO ATTACK A VICTIM
 – Map remote locations and use a tool to extract neighboring IP addresses – which will hopefully get extracted when eliminating ‘friendlies’
 – Attack from random geographic locations and with varying times
Deconstruct the translation file

- Insert image of deconstructed application
Q&A

Back to the Guinness tap...