
Dynamic Cross-Site Request
Forgery

A Per-Request Approach to Session Riding

By
Nathan Hamiel and Shawn Moyer

July 24, 2009

Revision 1

Dynamic Cross-Site Request Forgery

http://www.hexsec.com

http://www.hexsec.com
http://www.hexsec.com

Abstract

Cross-Site Request Forgery (“CSRF”) is typically described as a “replay” or static type
of attack, where a bad actor uses markup, Javascript, or another method to force a
client browser to perform a known, repeatable in-session transaction on the affected site
without the user’s knowledge.

Typical defensive measures against CSRF address this by creating unique, per-session
or per-request tokens that aren’t typically available to an attacker, and by checking for
other browser behaviors such as referring URL.

In this paper we describe a number of approaches to construct “dynamic” CSRF
attacks, forging unique requests on an automated, per-target basis, even in scenarios
where Cross-Site Scripting or Cross-Domain issues don’t exist.

“Classical” Cross-Site Request Forgery

Pete Watkins coined the term Cross-Site Request Forgery in a post to Bugtraq in 20011,
for what had been described in 1988 by Norm Hardy as the “Confused Deputy”2, in
reference to similar problems with compilers and timesharing systems.

The fundamental premise of CSRF is this: In the course of web browsing, a target user
encounters a request from a malicious site or location that makes a request on behalf of
the user to a site the user is already authenticated to.

A forged request could be in the form of an HTML tag such as an IMG, IFRAME, or
META refresh, embedded in Javascript or Flash, or sent as a 300-series HTTP redirect
from a location under the attacker’s control. If the target user is authenticated, relevant
HTTP headers and any authentication data are sent to the site along with the malicious
request.

From Watkins’ 2001 Bugtraq post:

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 2

1 http://www.tux.org/~peterw/csrf.txt
2 http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html

http://www.hexsec.com
http://www.hexsec.com
http://www.tux.org/~peterw/csrf.txt
http://www.tux.org/~peterw/csrf.txt
http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html
http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html

CSRF does not in any way rely on client-side active scripting, and its aim is to take
unwanted, unapproved actions on a site where the victim has some prior relationship
and authority.

Where XSS sought to steal your online trading cookies so an attacker could manipulate
your portfolio, CSRF seeks to use your cookies to force you to execute a trade without
your knowledge or consent (or, in many cases, the attacker's knowledge, for that matter).

Figure 1: An example of "Classic" CSRF. Hidden markup on bad.com forges a client request to an
authenticated session on good.com.

In 2004, Thomas Schreiber’s paper “Session Riding” 3 further expanded on Watkins
post, and went on to describe a number of attack scenarios where CSRF was possible
and valuable to an attacker, providing the most detailed accounting of the problem at
the time.

Schreiber went on to recommend tokenization as a solution, in addition to URL
rewriting:

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 3

3 http://www.securenet.de/papers/Session_Riding.pdf

http://www.hexsec.com
http://www.hexsec.com
http://www.securenet.de/papers/Session_Riding.pdf
http://www.securenet.de/papers/Session_Riding.pdf

To make a Web application safe against Session Riding, introduce a secret (aka hash,
token) and put it into every link and every form, at least into every form that is sensitive.
The secret is generated after the user has logged in. It is stored in the server-side
session. When receiving an http request that has been tagged with this information,
compare the sent secret with the one stored in the session. If it is missing in the request
or the two are not identical, stop processing the request and invalidate the session.

Schreiber’s is the most common approach to CSRF protection, and is the typical
mitigation approach in place today. While in the case of some newer frameworks, a
CSRF token may be unique to a given generated request and recreated per-pageview,
in practice CSRF token values are often valid for a given lifetime, such as a user’s
session, and not always mapped to a specific session at all.

Interestingly, Watkins’ original 2001 post saw the flaw in tokenization alone as a
defensive approach:

A combination of cookie + URL mangling might not be bad, though in the message
board case, a CSRF attacker could use an intermediate redirect (as described earlier) to
get the URL mangling (from the Referer), and redirect back to the messageboard with
the proper mangling as well as all cookies that might be expected/needed. So in your
example case, URL mangling would buy nothing.

Watkins’ point, that tokens or “URL mangling” buy nothing for sites where offsite linking
and referrer leakage is possible, remains valid today, and with the web’s increasing
emphasis on offsite content, shared APIs, and user-generated content, a number of
opportunities exist to prove Watkins’ point.

Additionally, while the tokenization approach is sound, it must be implemented properly,
with tokens being mapped to a given user session, not reusable, and sufficiently large
and random enough to prevent brute-force attacks.

A game-changing moment for CSRF was the Samy4 worm, which combined Cross-Site
Scripting with CSRF to propagate. In cases where this is approach feasible, CSRF is
often a payload of choice for Cross-Site-Scripting, using the XSS to forge requests that
include user-specific request tokens and other relevant session information.

“Dynamic” Cross-Site Request Forgery

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 4

4 http://namb.la/popular/tech.html

http://www.hexsec.com
http://www.hexsec.com
http://namb.la/popular/tech.html
http://namb.la/popular/tech.html

In a “dynamic” CSRF scenario, expanding on the approach described by Watkins, an
attacker creates a customized, per-request forgery, based on each user’s session-
specific information, including valid CSRF tokens and other parameters specific to the
user’s session.

In order for this approach to succeed without Cross-Site Scripting, a user would typically
need to make a request to a site under attacker control, and the useful information to
construct the request must be accessible to the attacker.

This scenario is more likely than it would first appear. Clicking on a link in the context of
a webmail application or message forum may leak the necessary information through
referrer, or if the target site permits the inclusion of offsite content, such as offsite
images (typical on many web forums and social networks), an attacker could silently
obtain the necessary information to construct a custom forged request, and send a
customized response to the target browser to call the “dynamic” CSRF.

Additionally, other scenarios such as session fixation or brute-force against tokens from
browser history5 might be feasible as methods to construct a “dynamic” CSRF, again
constructing the forgery “on the fly” for each target request.

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 5

5 http://securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-hack/

http://www.hexsec.com
http://www.hexsec.com
http://securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-hack/
http://securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-hack/

Figure 2: "Dynamic" CSRF scenario: User request is redirected to a CSRF with per-user session
information included, such as CSRF token and session ID.

In short, if it’s possible to obtain session specific information from a target browser in
some fashion, “dynamic” CSRF is possible. To take advantage of this problem on an
automated basis, an application controlled by the attacker could package different
payloads based on domain or URL from which a given request came, and include any
relevant “secret” URL-based information in the forged request, such as valid Session
IDs or CSRF tokens, obtained either via cross-domain referrer leakage or from other
means such as Session Fixation and other exposures.

As a trivial example, if the following value in the referrer were obtained from a request to
an attacker-controlled server, originating from a target browser:

http://good.com/function.php?val1=foo&val2=bar&token=765234

In “dynamic” CSRF, a simple application under attacker control could repackage the
request, sending a new request to the browser with a custom payload including the a
valid token, such as:

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 6

http://good.com/function.php?val1=foo&val2=bar&token=765234
http://good.com/function.php?val1=foo&val2=bar&token=765234
http://www.hexsec.com
http://www.hexsec.com

http://good.com/anotherfunction.php?val4=morefoo&val5=morebar&token=765234

If the user’s browser encounters the custom request as a redirect, a hidden form POST,
or some other method, the request is sent along with any relevant HTTP authentication
headers for good.com.

“Dynamic” CSRF Payloads

An application that constructs a dynamic payload for CSRF could take a number of
approaches. Each scenario will vary depending on what type of data the attacker has
the ability to put in the victims path, and the specific function being targeted on the site
in question.

HTTP Redirect Payload

A trivial payload, where possible from cross-domain referrer leakage, is the use of a
simple HTTP 302 redirect. In this case the attacker would use leaked session data and
construct a redirect with a location value populated with the relevant session data
obtained from the target browser.

Figure 3: Redirect payload, sending custom redirect to client browser via HTTP 302.

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 7

http://good.com/anotherfunction.php?val4=morefoo&val5=morebar&token=765234
http://good.com/anotherfunction.php?val4=morefoo&val5=morebar&token=765234
http://www.hexsec.com
http://www.hexsec.com

A dynamic payload is created with the associated token value and other session data is
sent. This would allow an attacker to potentially bypass CSRF protections in place and
execute a request of the attacker’s choice, and if the redirect is sent from a link in the
context of a target site, referrer checks wouldn’t apply - the referring site would remain
the source of the request, since browsers typically leave the original referrer intact.

 HTML-based Redirect

An application that creates “Dynamic” CSRF payloads could also create a custom page
based on referrer content and redirect the user to another site, performing the CSRF in
the background.

An interesting scenario here would be the use of a URL shortening service such as
TinyURL, Is.gd, or others, sending a redirect to an ultimate “legitimate” destination, but
embedding a custom CSRF payload in as part of an interstitial HTML page that includes
a meta refresh to another location that appears legitimate. The generated HTML could
construct a GET request with session data taken from cross-domain data, or even a
self-submitting form that constructs a POST request.

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 8

http://www.hexsec.com
http://www.hexsec.com

Figure 4: META refresh which includes hidden "dynamic" CSRF constructed from referrer leakage.

 Token Fixation “Dynamic” CSRF

In a scenario where CSRF tokens are reusable and not linked to a given user session, a
“dynamic” CSRF could construct a payload that issues a valid token to the user
obtained by making a request to the site directly and obtaining a valid token. This
approach is similar to session fixation attacks where SessionID is not paired to a given
IP address. A token is obtained, and if a user can be enticed to visit a site under
attacker control, a request is made on behalf of the user in the context of the target site.

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 9

http://www.hexsec.com
http://www.hexsec.com

Figure 5: "Dynamic" CSRF with token/session fixation. Application under attacker control makes a
request for a valid token that isn't mapped to a specific session, and issues it to the user.

 POST-based “Dynamic” CSRF

It is also possible to construct a POST-based “dynamic” CSRF request that requires no
interaction from the user’s browser. This could be possible in a multi-stage scenario,
where for example CSRF tokens and other relevant information that are valid for the
duration of a session are leaked via an offsite image or offsite content, and could then
be combined into a customized forged POST request.

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 10

http://www.hexsec.com
http://www.hexsec.com

Figure 5: POST-based "dynamic" CSRF scenario.

Further Thoughts

Theft of CSRF tokens isn’t the only use case for this approach. Even for CSRF where
tokens or authentication mechanisms aren’t in use or can be bypassed , dynamically
constructing the forgery on a per-request basis may be useful, such as targeting
parameters in the URL that are specific to a given authenticated user.

The larger point here is simply to remember the statement Watkins made eight years
ago, which seems to have been missed: CSRF is not purely a static attack based only
on known, repeatable parameters, it can be fluid, dynamic, and tailored to each target.

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 11

http://www.hexsec.com
http://www.hexsec.com

References
1. Norm Hardy, “The Confused Deputy”, 1988, Available: http://

www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html
2. Pete Watkins, “Cross-Site Request Forgery”, June 13, 2001, Available:

http://www.tux.org/~peterw/csrf.txt
3. Thomas Schreiber, “Session Riding”, December, 2004, Available:

http://www.securenet.de/papers/Session_Riding.pdf
4. Samy Kamkar, “MySpace Worm Explanation”, June, 2006, Available:

http://namb.la/popular/tech.html
5. SecureThoughts.com, “Hacking CSRF Tokens using CSS History Hack”,

July, 2009, Available: http://securethoughts.com/2009/07/hacking-
csrf-tokens-using-css-history-hack/

Dynamic Cross-Site Request Forgery

http://www.hexsec.com 12

http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html
http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html
http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html
http://www.cis.upenn.edu/~KeyKOS/ConfusedDeputy.html
http://www.tux.org/~peterw/csrf.txt
http://www.tux.org/~peterw/csrf.txt
http://www.securenet.de/papers/Session_Riding.pdf
http://www.securenet.de/papers/Session_Riding.pdf
http://namb.la/popular/tech.html
http://namb.la/popular/tech.html
http://securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-hack/
http://securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-hack/
http://securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-hack/
http://securethoughts.com/2009/07/hacking-csrf-tokens-using-css-history-hack/
http://www.hexsec.com
http://www.hexsec.com

