• XMPP/Jabber
• Transports
• Short mail
• Internet to mobile communications
• Number + Carrier = Victim
• Users get email message with subscription (texting)
• Received as a text message and not an email
• Cost equivalent to standard text message
ATTACKING SHORT MAIL

- Conventional spamming techniques
 - Mass emailers
 - Spoofing the source address
- Carrier can be identified by services online
 - Scriptable
- Short mail is accepted by default
LIMITATIONS

- Anything past 160 characters may be dropped
- Carrier must be properly identified for message to go through
- No delivery confirmation
• Incoming text = charge to the user
• Send short mail from any mail client
• Turned on by default
• Carrier offers limited methods to stopping the attack
Sprint
- 50 max email/domain blocked
- Can’t block everything

Verizon
- 10 max email/domain blocked
- Can block everything

AT & T
- 15 max email/domain blocked
- Cant block everything
• Short mail should not be directly tied into SMS
 • Possible flagged of message to identify origin
• Feature should be easily adjusted by the user
 • Should be turned off by default
• More power should be given to block unwanted messages
XMPP/Jabber

- Communications through XML
- Setting up your own server is easy
 - Multiple options for different platforms
- Allows for bonding to legacy chat implementations
- Control of message flow
 - No rate limiting
INTERNET TO MOBILE

- Google Talk, Yahoo, AIM, MSN (in some areas)
- Input a user’s phone number and they now a contact
- Messages get sent in the form of an SMS message
• Google forces a user to respond after a chat is initiated
 • No response after a few messages = no more talk
• Yahoo forces a user to respond after a chat is initiated and performs throttling
• AOL does NOT force a user to respond but does throttle
• Rate limiting is imposed when sending messages too fast
• Messages past 160 characters are split into multiple messages and NOT dropped
 • 1 message = 13 messages (2000 byte max)
• Acceptance must be made the first time for chatting (this was not always the case)
• Abuse can be programmatically done
• Transport is a bolt-on to a jabber server
• Shows up in service directory for the hosted jabber domain
• Users can bond to “legacy” services
 • Jabber_Name -> AOL
 • Log in to jabber and see AOL contacts
 • User looks like: AOLcontact@myJabber.com
• Jabber name can bond to multiple AOL names (each must be on a different transport)
• Public transports are available
• Internal Jabber server with AIM transport service
• Bond internal jabber accounts with AOL accounts
• Send messages to phones using internal jabber account
• Connection, bonding and authorization can be done programmatically
ABUSING PHONES

• Generate phone list
• Generate AOL account list (you must own these)
• Read through list and send one giant message per number (1000 messages per second)
• Send multiple messages to one number (must add delay to avoid rate limits)
• AOL is the single point of failure
• Rate limiting is a pain
• Phone carriers queue messages
 • Limited bandwidth
 • Some messages could be dropped
• AOL provides support to combat against spam and allows users to block messages
• Send messages at a high rate of speed
• Some transports have support for SOCKS proxies (tor)
• Public transports are often found in other countries with a large user base (good for hiding)
• All attacks can be done programmatically without interaction
• AOL needs to follow Yahoo and Google’s implementation design
• Protection has gotten better since testing first began a year ago
 • ToC servers appear to no longer support Internet to mobile communications
- Eliminates dependencies with libraries
- Could easily be made into a framework with modules
- Can be accessed anywhere by many people
- Proof-of-Concept allows
 - Bonding of names
 - Sending messages through a choice of transports
 - Sending spoofed short mail messages
 - Identifying public transports
 - More could be added