INSECURITY ENGINEERING: Locks, Lies, and Videotape
LOCK DESIGN:
MECHANICAL v. SECURITY ENGINEERING

- PRIOR DefCon PRESENTATIONS
- Vulnerabilities in mechanical and electromechanical locks
- Resulted from Defective or Deficient engineering
- All-encompassing standards problem
- Failure to understand “why” locks can be opened, rather than “how”
INSECURITY ENGINEERING

- DEFICIENT OR DEFECTIVE PRODUCTS
 - Intersection of mechanical and security engineering

- FALSE SENSE OF SECURITY
 - What appears secure is not
 - How do you know the difference?
 - Undue reliance on standards

- MISREPRESENTATIONS BY MFG
SPECIFIC DESIGN FAILURES

- KWIKSET SMART KEY®
- KABA IN-SYNC
- AMSEC ELECTRONIC SAFE ES813
- ILOC ELECTRO-MECHANICAL LOCK
- BIOLOCK FINGERPRINT LOCK
 - Examine each lock for security vulnerability
 - Statements from the manufacturers about their security
LOCKS: THE FIRST LINE OF DEFENSE

- LOCKS: FIRST SECURITY BARRIER
- OFTEN, THE ONLY SECURITY LAYER
- MEASURED BY STANDARDS
- WHAT IF NOT RATED BY UL or BHMA
- HOW DO YOU KNOW THAT LOCKS ARE SECURE?
- WHAT DOES “SECURE” MEAN?
MANUFACTURER RESPONSIBILITIES

- UNIQUE RESPONSIBILITY FOR COMPETENCE
 - MECHANICAL ENGINEERING
 - SECURITY ENGINEERING

- IMPLIED REPRESENTATIONS
 - “WE ARE EXPERTS”
 - SECURITY OF THEIR PRODUCTS
 - REPRESENTATIONS
 - “WE MEET OR EXCEED STANDARDS”
EXPERTISE REQUIRED IN LOCK DESIGN

- MECHANICAL ENGINEERING
- SECURITY ENGINEERING
- MINIMUM INDUSTRY STANDARDS REQUIRE LEVEL OF KNOWLEDGE

SECURITY ENGINEERING REQUIRES:
- UNDERSTAND USE OF WIRES, MAGNETS, PAPERCLIPS, BALL POINT PENS, ALUMINUM FOIL
- BYPASS TECHNIQUES
ENGINEERING FAILURES: RESULTS AND CONSEQUENCES

- INSECURITY ENGINEERING
 - Insecure products
 - Often easily bypassed
 - Use standards as the measure when they do not address the relevant issues
 - Products look great but not secure
 - False sense of security
COST AND APPEARANCE v. QUALITY AND SECURITY

- DO YOU GET WHAT YOU PAY FOR?
- 2$ LOCKS ARE 2$ LOCKS!
- SHORTCUTS DO NOT EQUAL SECURITY
- CLEVER DESIGNS MAY REDUCE SECURITY
- PATENTS NOT GUARANTEE SECURITY
SECURITY GRADES v. SECURITY RATINGS

- UL 437 AND BHMA 156.30 SECURITY STANDARDS
- BHMA SECURITY GRADES
- DEADBOLT SECURITY
 - Lock cylinder v. locking hardware
 - Locks and hardware are different
 - “The key never unlocks the lock”
LOCK MFG OFTEN CANNOT OPEN THEIR OWN LOCKS

- MEET STANDARDS BUT NOT SECURE
- MISREPRESENTATIONS
- PRODUCE INSECURE PRODUCTS
- TODAY: FIVE EXAMPLES OF DEFICIENT OR INCOMPETENT SECURITY ENGINEERING
FIVE EXAMPLES: INSECURITY ENGINEERING

- CONVENTIONAL PIN TUMBLER LOCK
- ELECTRO-MECHANICAL LOCK
- BIOMETRIC FINGERPRINT LOCK
- ELECTRONIC RFID LOCK
- CONSUMER ELECTRONIC SAFE

- All appear secure: None are!
- This year, focus on wider problem
- Representative sample
- Hundreds of bypass tools based upon insecurity
ANALYSIS OF EACH LOCK

- HOW IT WORKS
- WHY DEFICIENT OR DEFECTIVE
- BYPASS VULNERABILITIES
- STATEMENTS BY MANUFACTURERS
- MUST UNDERSTAND THE METHODOLOGY
- REMEMBER FIRST RULE: “THE KEY NEVER UNLOCKS THE LOCK”
EXAMPLE #1: KWIKSET SMART KEY®
KWIKSET SMART KEY®

- $2 TO MANUFACTURER
- CLEVER DESIGN: OUR OPINION: POOR SECURITY
- NOT JUST OURS: READ MANY COMMENTS ON WEB
- MANY SECURITY VULNERABILITIES
- MILLIONS SOLD EVERY YEAR
- EXTREMELY POPULAR LOCK
KWIKSET ATTRIBUTES

- CLEVER DESIGN
- PROGRAMMABLE
- COPIED AND MODIFIED EARLIER DESIGNS
- CANNOT BUMP
- DIFFICULT TO PICK
- RATINGS
KWIKSET REPRESENTATIONS

- “ANSI Grade 1 deadbolt for the ultimate in security. Secure your home in seconds with SmartKey.”
- INCREASED SECURITY
- BUMP RESISTANT
- PICK RESISTANT
HOW SMART KEY WORKS
VULNERABILITIES

- COMMERCIAL TOOLS AVAILABLE
- EASY TO COMPROMISE WITH SIMPLE IMPLEMENTS, RAPID ENTRY
 - COVERT ENTRY
 - FORCED ENTRY
 - KEY SECURITY
KWIKSET SECURITY

- TINY SLIDERS
- THIN METAL COVER AT END OF KEYWAY
- OPEN RELATIVELY EASILY AND QUICKLY
 - Wires
 - Small screwdriver
 - $.05 piece of metal
KWIKSET SLIDERS: The Critical Component
EXAMPLE #2: ILOQ
EXAMPLE #2: ILOQ

- MADE IN FINLAND
- VERY CLEVER DESIGN
- COST: $200+
- ELECTRO-MECANICAL DESIGN
- MECHANICAL KEY + CREDENTIALS
- NO BATTERIES: LIKE A CLOCK AND MAGNETO, GENERATES POWER
ILOQ: OUR SECURITY
ILOC MECHANISM
ALL KEYS IDENTICAL
ILOQ VULNERABILITIES

- SET THE LOCK ONCE
- ANY KEY WILL OPEN
- NO NEED FOR CREDENTIALS
- VIRTUALLY NO SECURITY
- DIFFICULT TO DETECT
- LOCK OPERATES NORMALLY ONCE SET
EXAMPLE #3: KABA IN-SYNC RFID-BASED LOCK
KABA IN-SYNC ATTRIBUTES

- WIDE APPLICATION
- AVAILABLE FOR SEVERAL YEARS
- MILITARY AND CIVILIAN APPLICATIONS
- USE SIMULATED PLASTIC KEY WITH RFID
- AUDIT TRAIL
IN-SYNC INTERNAL MECHANISM: LOCKING
BOLT RETRACTS
TURN TO OPEN
EXAMPLE #4: AMSEC ES813 CONSUMER “SAFE”
ELECTRONIC KEYPAD
AMSEC SAFE ES813 AND OTHERS

- CONSUMER LEVEL SAFE
- $100 FOR SMALLEST UNIT
- ELECTRONIC KEYPAD
- HOW MUCH SECURITY EXPECTED?
- INCOMPETENT DESIGN
- FOUND IN MANY OTHER SAFES
EXAMPLE #5: BIOLOCK
BIOMETRIC LOCK

- FINGERPRINT + BYPASS CYLINDER
- LOOKS SECURE
- $200 OR MORE
- INSECURITY ENGINEERING AT ITS BEST
LESSONS LEARNED

- CLEVER ≠ SECURITY
- LOCKS REQUIRE BOTH MECHANICAL AND SECURITY ENGINEERING
- PATENTS DON’T GUARANTEE SECURITY
- STANDARDS DO NOT MEAN SECURITY
INDUSTRY UPDATE

- STANDARDS
 - BUMPING
 - PROPOSED BHMA CHANGES

- MANUFACTURERS ARE PAYING ATTENTION AND MAKING CHANGES

- CORRECT PROBLEMS AT PRIOR DEFCON PRESENTATIONS

- WORKING WITH MANUFACTURERS TO TEST LOCKS “REAL WORLD”
SECURITY LABS: REAL WORLD TESTING

MISSION OF SECURITY LABS

- TEST LOCKS FOR MAJOR COMPANIES AND VENDORS
- LEVEL ABOVE UL, BHMA, AND OTHERS
- DETERMINE AND EXPOSE VULNERABILITIES
- WORK WITH CLIENTS IN NEW PRODUCT DESIGN
- PURSUE ACTIONS FOR DEFECTIVE PRODUCTS
CONCLUSIONS

- MISREPRESENTATIONS BY MANY MANUFACTURERS
- HIGH-TECH DESIGNS ≠ SECURITY
- BYPASS TOOLS FOR MANY LOCKS, RELY ON INSECURITY
- MANY MFG DON’T KNOW OF VULNERABILITIES
- INSECURITY = LIABILITY
- CAVEAT EMPTOR