Agenda

• About Us
• Introduction
• What’s a Malware Freakshow?
• Anatomy of a Successful Malware Attack
• Sample Analysis + Victim + Demo
 • Sample SL2009-127 – Memory Rootkit Malware
 • Sample SL2010-018 – Windows Credential Stealer
 • Sample SL2009-143 – Network Sniffer Rootkit
 • Sample SL2010-007 – Client-side PDF Attack
• Conclusions
About Us

Nicholas J. Percoco / Senior Vice President at Trustwave

• 15 Years in InfoSec / BS in Computer Science
• Built and Leads the SpiderLabs team at Trustwave
• Interests:
 – Targeted Malware, Attack Prevention, Mobile Devices
 • Business / Social Impact Standpoint

Jibran Ilyas / Senior Security Consultant at Trustwave

• 8 Years in InfoSec / Masters in Infotech Management from Northwestern University
• Interests:
 – Antiforensics, Artifact Analysis, Real time Defense
Introduction

We had a busy year!!

- Over 200 incidents in 24 different countries
- Hundreds of Samples to pick from
- We picked the most interesting for you

New Targets This Year

- Sports Bar in Miami
- Online Adult Toy Store
- International VoIP Provider
- US Defense Contractor

Malware Developers were busy updating/improving their code

- Many improvements to avoid detection
- Maybe they saw our Freakshow last year 😊
What’s a Malware Freakshow?

We have access to breached environments

- These environments contain valuable data
- Smash and Grab is old school
- Attackers spend average of 156 before getting caught
- With time, comes exploration and development
- Custom and Targeted Malware is the Norm, not the exception
- Gather and perform analysis on each piece of Malware
 - A Malware Freakshow demos samples to the security community
 - Benefit: Learn the sophistication of the current threats
 - Goal: Rethink the way we alert and defend!!!
Anatomy of a Successful Malware Attack

Malware development takes a methodical approach

• Step 1: Identifying the Target
• Step 2: Developing the Malware
• Step 3: Infiltrating the Victim
• Step 4: Finding the Data
• Step 5: Getting the Loot Out
• Step 6: Covering Tracks and Obfuscation (optional)

Before we discuss the samples, we’ll cover this process.
Anatomy – Step 1: Identifying the Target

Target the Data that will lead to the Money

• Credit Card Data
 – Exists in plain text in many type of environments
 – Cash is just 4 hops away
 [Track Data]-->[Fake Card]-->[Fraud]-->[Sale of Goods]-->[Cash]

• ATM/Debit Card Data
 – Limited to only ATM Networks and places accepting debit
 – Need PIN as well
 – Cash is just 3 hops away
 [Track Data+PIN]-->[Fake Card]-->[ATM Machine]-->[Cash]
Anatomy – Step 2: Developing the Malware

Depends on the Target System, but focus on the Big Three

• Keystroke Logger
• Network Sniffer
• Memory Dumper
• Disk Parser?

Design Considerations

• Naming Convention
 • blabla.exe – not the best name choice
 • svchost.exe – much better 😊
• Functionality
 • Slow and Steady wins the race
• Persistency and Data Storage
Anatomy – Step 3: Infiltrating the Victim

Three basic methods of planting your malware:

- **The Physical Way**
 - “Hi, I’m Ryan Jones. Look over there. pwned”

- **The Easy Way**
 - “Nice to meet you RDP & your friend default password”

- **The Über Way**
 - 0days
 - “Silent But Deadly”
Anatomy – Step 4: Finding the Data

The Software Holds the “Secrets”

- **Task Manager**
 - Busy Processes == Data Processing

- **Process’s Folders**
 - Temp Files == Sensitive Data

- **Configuration Files**
 - Debug Set to ON == Shields Down

- **The Wire**
 - Local Network Traffic == Clear Text
Anatomy – Step 5: Getting the Loot Out

Keep It Simple Stupid

• Little to no egress filtering, doesn’t mean use TCP 31337
• Don’t Reinvent to Wheel
 – FTP
 – HTTP
 – HTTPS
 – SMTP
• IT/Security Professional Look for Freaks
 – Traffic on high ports == suspicious
Anatomy – Step 6: Covering Tracks and Obfuscation

Don’t Be Clumsy

• *Test the Malware First!*
 – Crashing Systems = Sorta Bad
 – Filling Up Disk Space = Real Bad
 – CMD Popping Up = Just Stupid

Mess with the Cops

• MAC times to match system install dates
• Obfuscate Output file; even just slightly
• Pack the *Bag of Tricks*
• Automate, but Randomize Events
• Rootkits
Vitals

<table>
<thead>
<tr>
<th>Code Name</th>
<th>Capt. Brain Drain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>ram32.sys</td>
</tr>
<tr>
<td>File Type</td>
<td>PE 32-bit, Kernel Driver</td>
</tr>
<tr>
<td>Target Platform</td>
<td>Windows</td>
</tr>
</tbody>
</table>

Key Features

- Installs malware as a rootkit to stay hidden from process list
- Checks all running processes in kernel for track data
- Output dumped to file w/ “HIDDEN” and “SYSTEM” attributes
- Character substitution in output file to avoid detection
- At set time daily, malware archives data and flushes the data from output file to avoid duplication of stolen data

Victim

Sports Bar in Miami
- An elite location that attracts celebrities
- IT operations outsourced to Third Party
- Owner throws away security and compliance notices as monthly IT expenses “give him a headache”.
- POS System is also a DVR server
Sample SL2009-127 – Memory Rootkit Malware

It’s Demo Time!
Sample SL2010-018 – Windows Credential Stealer

<table>
<thead>
<tr>
<th>Vitals</th>
<th>Code Name:</th>
<th>Don’t Call Me Gina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Filename:</td>
<td>fsgina.dll</td>
</tr>
<tr>
<td></td>
<td>File Type:</td>
<td>Win32 Dynamic Link Library</td>
</tr>
<tr>
<td></td>
<td>Target Platform:</td>
<td>Windows</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Features</th>
<th>Loads with Winlogon.exe process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Changes Windows Authentication screen to a “Domain login” screen.</td>
</tr>
<tr>
<td></td>
<td>Stores stolen credentials in ASCII file on system</td>
</tr>
<tr>
<td></td>
<td>Only stores successful logins</td>
</tr>
<tr>
<td></td>
<td>Attempts exporting logins via SMTP to an email address.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Victim</th>
<th>Online Adult Toy Store</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A 100 person company on the West Coast of USA.</td>
</tr>
<tr>
<td></td>
<td>Outsourced website hosting and dev to a low cost provider</td>
</tr>
<tr>
<td></td>
<td>Admin page allows uploads of files</td>
</tr>
<tr>
<td></td>
<td>Database stores card data for 10 minutes post transaction</td>
</tr>
</tbody>
</table>
Another Demo!
Sample SL2009-143 – Network Sniffer Rootkit

<table>
<thead>
<tr>
<th>Vitals</th>
<th>Code Name: Clandestine Transit Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Filename: winsrv32.exe</td>
</tr>
<tr>
<td></td>
<td>File Type: PE 32-bit</td>
</tr>
<tr>
<td></td>
<td>Target Platform: Windows</td>
</tr>
</tbody>
</table>

| Key Features | • Components of malware embedded inside it - Ngrep, RAR tool and Config file
| | • Uses rootkit to hide malware from Task Manager
| | • Ngrep options contains Track Data regular expression
| | • At the end of the day, it RARs and password protects the temporary output file and creates new file for next day.
| | • Exports compressed and password protected data via FTP |

<table>
<thead>
<tr>
<th>Victim</th>
<th>International VoIP Provider</th>
</tr>
</thead>
</table>
| | • Seven person company (~80,000 active customers)
| | • 2 methods of payment: website or kiosk
| | • Data Center was in barn; was home to 20 farm cats
| | • Payment Switch support outsourced to 3rd party |
Sample SL2009-143 – Network Sniffer Rootkit

Demo #3!
Sample SL2010-007 – Client-Side PDF Attack

<table>
<thead>
<tr>
<th>Vitals</th>
<th>Code Name: Dwight’s Duper</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Filename: Announcement.pdf</td>
</tr>
<tr>
<td></td>
<td>File Type: Portable Document Format</td>
</tr>
<tr>
<td></td>
<td>Target Platform: Windows</td>
</tr>
</tbody>
</table>

Key Features
- Malware attached in targeted email looks to be normal PDF
- PDF contains 0day exploit (in January it was).
- Shell code executes upon PDF launch
- Shell code calls a batch file which steals all *.docx, .xlsx, .pptx and txt files from user’s My Documents folder
- Stolen files are compressed, password protected and sent to FTP over TCP port 443

Victim
- **US Defense Contractor**
 - Provides analytics service to US Military
 - No inbound access allowed from the Internet without VPN
 - Egress filtering set to only allow TCP ports 80 and 443
 - Extremely secure environment compared to previous 3
Last One!
Conclusions (What we learned in the past year)

Customization of Malware
 • One size fits all is not the mantra of attackers today

Slow and Steady wins the race
 • Malware writers are not in for quick and dirty hacks. Since data is stolen in transit, persistency is the key.

AntiForensics
 • Detection is not easy for these new age malware. MAC times are modified; random events configured and protection from detection built in.

Automation
 • Attackers adding layers to malware to automate tasks so that they don’t have to come in to the system and risk detection.

Not Slowing Down
 • Since Malware Freakshow last year at DEF CON 17, the techniques have improved significantly.
Contact Us:

Nicholas J. Percoco / npercoco@trustwave.com / @c7five

Jibran Ilyas / jilyas@trustwave.com / @jibranilyas