Network Nightmare

Ruling the nightlife between shutdown and boot with pxexploit
• Matt Weeks
• Scriptjunkie if you hang out on irc
• I have a twitter but I don’t use it
• http://www.scriptjunkie.us/
• scriptjunkie {shift+2} scriptjunkie.us
What’s going on here

- Want to compromise another system on the LAN?
- Could write an amazing 0-day for [list running network services]
 - But that can take a lot of time
 - Fuzzing/static analysis -> Vulnerability ID ->
 Identify exploitation path -> Bypass protections ->
 blah blah blah -> and you still need to escalate privs
Easier way?

• How about we try an offline attack?
Offline attacks

- Evil maid attack
- Rubber hose cryptanalysis
Downsides

• Usually require physical access
• Usually not very stealthy
• Often could wind up with a lot of jail time
• Of course lots of pentesters have flown places, snuck in buildings, and physically accessed systems
PXE

- Intel-introduced firmware to boot from NIC
- BIOS-level access
 - Bypasses application defenses/host firewalls/OS protections/AV
 - Independent of OS
 - Works over network
 - Full system control
How it works

- Step 1 – Your computer shuts down
How it works

• Step 2 – Wake up ... something’s different
PXE Proliferation

• Almost every system BIOS I have looked at is PXE-capable
• I have no stats on how widely it is turned on
• I have seen it used, I have seen it left on, I have seen it turned off
• I do not have a lot of experience
Why would Intel do this to us?

• My guess at top syadmin reasons:
 – Used for image deployment
 – Used for system restoration
 – Not used, but ready for OS upgrades
 – What’s that? I have that on?
How PXE works

- DHCP extension
 - Client sends DHCPDISCOVER with PXE option
 - Server sends DHCPOFFER with server IP addresses, other information
 - Repeat with DHCPREQUEST/DHCPACK

- TFTP Download from identified server
- Executes code
- Magic
PXE Difficulties

• DHCP extension
 – Must be on LAN, beat real DHCP server
• Forwards to TFTP
 – Need one o’ these servers too
• Downloads/executes code
 – Code running on bare metal
Preboot Execution Environment (PXE) Specification

Version 2.1
Current PXE “attacks”

- Manual creation of PXE server
- Manual configuration of DHCP
- Deploying images
- Or running pxelinux
Current PXE “attacks”

- Not written to be attacks
- Manually reconfiguring admin tools
 - Time-consuming
 - Imaging can replace all existing data
 - Difficult to deploy to remote network
 - Unreliable or lack targets
 - Lack support for custom payloads
Online Control

• Some Linux live CDs can be booted via PXE
 – DSL
 – Tiny Core
 – Knoppix

• Strategy
 – Remaster live CD
 – Boot live CD via PXE
 • pxelinux loads kernel, initrd
 • scripts may connect back to nfs to continue booting
 – Have scripts auto-run to connect back
 – Shell!
Online Control

- Demo
Online Control

• Advantages
 – No reliance on target OS
 – Flexibility
 – No need to code the whole attack beforehand
Online Control

- Problems
- MyNetworkCard™ compatibility
 - Even if the distro has a driver for your card, the initrd doesn’t!
- Time
 - Someone’s probably sitting on the other end staring at the screen
 - Be fast
Offline Code Injection

• You are going to do it anyway
• Executing outside the OS is OK, executing a process with privileges inside the system is better
Offline Linux Code Injection

- Shellcode on boot
 - Write/edit file to RCE
 - /etc/init.d/...
 - ~/.bashrc etc

- User add
 - /etc/passwd
 - ~/.ssh/authorized_keys
Offline Windows Code Injection

- Bootkits
- Binary planting
- Binary swapping
- Binary embedding/modification
- DLL preloading
- Registry edits
- Binary swapping + service editing
Note!

• This presentation will not be addressing FDE
• See cold boot attack or evil maid attack details
Bootkits

- Sinowal
- Stoned
- Whistler
- TDL/Alureon
Bootkits

- Advantages:
 - Skillz points
 - Stealth
 - Full privileges
Bootkits

• Disadvantages:
 – Usually very OS-specific
 – Usually don’t work when MS patches OS protections
 – A lot of work and probably overkill for PXE attack
Binary Planting

• Startup folders
 – C:\Documents and Settings\All Users\Start Menu\Programs\Startup
 – C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup
 – Unprivileged

• WBEM .mof method
 – Stuxnet!
 – Unfortunately not always applicable (Not compatible with Vista+)
Binary Swapping

- Example:
 - Swap services/svchost/wininit/... with replacement
 - Replacement starts up old services.exe and payload, then replaces itself with old services.exe

- Advantages:
 - Code execution guaranteed
 - Privileged
 - Portable
Binary Swapping

• Disadvantages:
 – Early-start processes cause bluescreen when they exit
 – To replace swapped exe, process must exit
 – Later-start processes can be disabled
 – Cannot rely on either
Binary Embedding/Modification

• Inject additional code into existing .exe files
 – svchost/wininit/winlogon/...

• Example:
 msfvenom -f exe -x svchost.exe -k -p - < pay > a.exe
Binary Embedding/Modification

- Problems
- Different architectures
 - Embedding x86 != embedding x64
 - Cannot rely on enough slack space in different windows versions
 - Still have issues with cleaning up after yourself
DLL Preloading

- Swap user32.dll or some other dll
- Or add dll higher in search path with payload
- Problems:
 - Architecture
 - Imports
- Still an option
Registry Edits

- Lots of options!
 - Run keys -
 HK(LM|CU)\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
 • Reliable
 • Unprivileged
 - Service addition
 HKLM\SYSTEM\CurrentControlSet\Services
 • Privileged!
 • Registry values differ between versions
Registry Edits

— Service Editing
 HKLM\SYSTEM\CurrentControlSet\Services
 • Privileged!
 • Changing binpath string, possibly type, start

— Known DLL’s
 • Privileged!
 • Add string

— And others
Registry Edits

• Wait, registry edits? Strings?
 – We are using a Linux initrd
 – We are adding data to registry
 – Probably will work with chntpw’s ntreged library
 – But ...

Hive expansion! ... If expansion occurred, you will get a warning when writing back.

– We really don’t want to corrupt the HKLM registry, however unlikely
Binary Swapping + Regedit

- Swap a non-essential service binary (late-boot)
- Use DWORD registry edit to enable service
- On boot, service runs
Binary Swapping + Regedit

- Reliable
- No bluescreens
- Cross-arch
- No registry corruption warnings
Pivoting

• Run in memory via meterpreter
 – Railgun
 • Network delay
 – Extension
 • Compiled program
Meterpreter Review

• TLV request
• Embedded DLL
• Reflective Loader
• Method Calls
Attack Recap

1. Dynamic payload generation
2. DHCP forwarder
3. TFTP serve
4. PXELinux kernel, initrd load
5. Binary swap
6. Registry edit
7. Reboot to OS
8. Swapped EXE spawns payload, cleanup
Defense

- How to fail at defense:
 - IP reservations
 - NAC
 - PXE Force Mode
 - BIOS passwords
Defense

• VLAN isolation
 – Each system on separate VLAN
 – Localize broadcast domains
 – Forward DHCP traffic
 – Configure via enterprise switch/routers
Defense

- Firewalls
 - Only allow DHCP traffic to/from server
 - Watch for ARP poisoning
Defense

- Detection of rogue DHCP servers
 - Scan periodically
 - Check for duplicate replies
 - Check for ARP poisoning
 - Check for unregistered clients if possible
Questions