Network Anti-Reconnaissance
Messing with Nmap Through Smoke and Mirrors

- AltF4
Anti-Reconnaissance

• Consider 3 main phases of a network attack:
 1) Gain Access
 2) Perform Reconnaissance
 3) Exploit Vulnerability

• Focusing on the second phase
 • Anti-Reconnaissance
 • Obscures the network
 – Obfuscate

• Not Intrusion Detection / Prevention

• Not Access Control
Reconnaissance: HowTo

• Find information to use in an exploit
 • Number of systems
 – ARP Sweep scan / ICMP Echo
 • Types (OS) of systems
 – OS detection scans
 • Open ports
 – TCP SYN / CONN (etc...) scans
 • Network Topology
 – Traceroute
 • Running Services
 – Service Detection Scans
Why Is Detecting Recon Hard?

• Signatures Fail
 • Identical at the packet level
 – ARP, TCP SYNs, ICMP, ...

• Speed
 • Being very slow can be stealthy
 – One packet per hour
 • Being very fast can be stealthy
 – Finish before anyone notices

• Already inside your network
 • Border security already bypassed (firewall)
Why Is Preventing Recon Hard?

- Metadata
 - Can't encrypt it
- Obfuscation
Constraining The Problem

- A Needle in a Haystack
 - Drown real nodes with realistic fake ones
 - Honeyd
- Two goals:
 - Obfuscates the network
 - Reconnaissance gets lots of bogus results
 - Identifies Reconnaissance
 - Traffic to decoys are presumptively hostile
Honeypots and Decoys

- Low Fidelity Honeypots
 - Not a real machine
 - Nor a “Virtual Machine“ as you know it
 - Can't be exploited like a VM can
 - Can be produced en masse
- Honeyd
 - Last update: 05/07/2007
 - Nmap new probes since then
 - nmap-os-db
 - github.com/datasoft/honeyd
Haystack

- Attacker gains access
 - Massive network
 - Most machines are fake
 - Can't tell the difference

- Reconnaissance becomes:
 - Ineffective
 - Cumbersome
 - Obvious
Classification

- High Fidelity Honeypots
 - Inspect log files
 - Manually
 - Maybe automated tools
- Signatures
 - IDS / Antivirus
 - Mostly fails
Machine Learning

- **K - Nearest Neighbors**
 - **N Statistical Features**
 - **Scalar Values**
 - Packet Timing
 - IPs contacted
 - Ports contacted
 - Haystack nodes contacted

- **Training Data**
 - Programmed into the system
 - Like a spam filter
 - Plot data points in N dimensional space
• Query Point
 • Search for the k nearest neighbors
 • Majority vote
 – Distance metric

• **libann**
 • Approximate Nearest Neighbors
 • Introduces some error
 • Large performance gains
Features

- Haystack Autoconfig
 - Scans your network
 - Builds a Haystack from it
- Multiple UIs
 - WebUI, Qt, Terminal
- Import / Export Training Data
- Highly Multithreaded
- Free Software
Questions & Contact

- Email
 - altf4@phx2600.org

- Identi.ca
 - @altf4

- Twitter
 - @2600AltF4

- Diaspora
 - altf4@joindiaspora.com

- Development
 - github.com/DataSoft
 - IRC: OFTC #nova

- In Person
 - 1st Fridays, phx2600.org