Defeating Security Enhancements (SE) for Android

Pau Oliva Fora
poliva@viaforensics.com
@pof
$ whoami

- Pau Oliva Fora, aka @pof
 - Mobile security engineer with viaForensics
 - Linux guy, R+D background
 - Smartphone research since 2004
 - Android research since 2008
 - Co-author of the upcoming Android Hacker’s Handbook
AGENDA

1. Tested implementations
2. Effectiveness
3. Weaknesses
4. Implementation issues
1. TESTED IMPLEMENTATIONS
TESTED IMPLEMENTATIONS

Compiled from public Sources
(AOSP + bitbucket)
TESTED IMPLEMENTATIONS

SEAdmin vs. SEManager
TESTED IMPLEMENTATIONS

Toshiba AT300
(sealime: Linux Security Module)
2. EFFECTIVENESS
EFFECTIVENESS

Good to enforce fine-grained Mandatory Access Control (MAC)

• Install time MAC
• Intent MAC
• Content Provider MAC
EFFECTIVENESS

Prevent privilege escalations by isolating “contexts”
EFFECTIVENESS

Permission checks on IPC operations (binder)
EFFECTIVENESS

Permission revocation
3. WEAKNESSES
WEAKNESSES

Known:
Doesn’t protect against kernel vulns
WEAKNESSES

Needs to be enhanced:
Secure Boot + runtime integrity check
WEAKNESSES

Multiple workarounds in commercial implementations:

Vendors don’t know how to write policies
4. IMPLEMENTATION ISSUES
IMPLEMENTATION ISSUES

Issue #1: don’t forget recovery!

System boots in Enforcing mode

BUT…
IMPLEMENTATION ISSUES

Issue #1: don’t forget recovery!

System boots in Enforcing mode

BUT...

...recovery image left in Permissive mode
IMPLEMENTATION ISSUES

Issue #1: don’t forget recovery!

DEMO 0: so obvious it doesn’t need a demo!
IMPLEMENTATION ISSUES

Issue #2: check your policies!

root user can’t disable SEAndroid
BUT…
IMPLEMENTATION ISSUES

Issue #2: check your policies!

root user can’t disable SEAndroid

BUT...

...system user CAN
IMPLEMENTATION ISSUES

Issue #2: check your policies!

root user can’t disable SEAndroid
BUT...

...system user CAN *facepalm*
IMPLEMENTATION ISSUES

Issue #2: check your policies!

DEMO 1:
Disable SELinux with root or system privileges
IMPLEMENTATION ISSUES

Issue #2: check your policies!

DEMO 1:
Disable SELinux with root or system privileges

root@android# id
uid=0 gid=0 (root)
root@android# setenforce 0
Permission denied
root@android# echo 0 > /sys/fs/selinux/enforce
Permission denied
root@android# su system
system@android$ setenforce 0
IMPLEMENTATION ISSUES

Issue #3: never enforce from a system app!

SEAndroid enforced from a system app
IMPLEMENTATION ISSUES

Issue #3: never enforce from a system app!

SEAndroid enforced from a system app

DOUBLE FACEPALM
When the Fail is so strong, one Facepalm is not enough.
IMPLEMENTATION ISSUES

Issue #3: never enforce from a system app!

Combine it with fail #1 and…

```
$ adb reboot recovery
$ adb wait-for device
$ adb pull /system/app/SEAndroidManager.apk
$ adb remount
$ adb shell rm /system/app/SEAndroidManager.apk
$ adb reboot
```
IMPLEMENTATION ISSUES

Issue #3: never enforce from a system app!

Combine it with fail #1 and...

```
$ adb reboot recovery
$ adb wait-for-device
$ adb pull /system/app/SEAndroidManager.apk
$ adb remount
$ adb shell rm /system/app/SEAndroidManager.apk
$ adb reboot
```

BUT what if we don’t have access to recovery?
IMPLEMENTATION ISSUES

Issue #3: never enforce from a system app!

DEMO 2:
Wrong chain of trust ➔ disable during boot
IMPLEMENTATION ISSUES

Issue #3: never enforce from a system app!

Not protected from being disabled during boot:

```
$ adb reboot
$ while true; do
  adb shell pm disable com.android.seandroid_manager
done
```

You can even over-complicate that and write an android app with a higher priority boot receiver…
IMPLEMENTATION ISSUES

Issue #4: Toshiba FAIL

$ adb shell
root@android# ls -l /proc/seandroid
opendir failed, Operation not permitted
IMPLEMENTATION ISSUES

Issue #4: Toshiba FAIL

~config - Linux/x86_64 2.6.39.4 Kernel Configuration~

CONFIG STRICT_DEVMEM:

If this option is disabled, you allow userspace (root) access to all of memory, including kernel and userspace memory. Accidental access to this is obviously disastrous, but specific access can be used by people debugging the kernel. Note that with PAT support enabled, even in this case there are restrictions on /dev/mem use due to the cache aliasing requirements.

If this option is switched on, the /dev/mem file only allows userspace access to PCI space and the BIOS code and data regions. This is sufficient for dosemu and X and all common users of /dev/mem.

If in doubt, say Y.

Symbol: STRICT_DEVMEM [=y]
Type : boolean
Prompt: Filter access to /dev/mem
 Defined at arch/x86/Kconfig.debug:8
 Location:
 -> Kernel hacking
IMPLEMENTATION ISSUES

Issue #4: Toshiba FAIL

DEMO 3:
Disable SEAndroid LSM
by poking kernel memory
Thank you!

Contact: @pof
poliva@viaforensics.com

Greetz & thanks: @djrbliss, @timstrazz, @TeamAndIRC, @cryptax, @ChainfireXDA, @jduck, @quine, @collinrm, @ochsff, @s7ephen, @iolandatweets, @thomas_cannon, @insitusec, @marcoggrass, @ahoog42, @0xroot, @andreybelenko, @giantpune & vF team!