Deconstructing the Circuit Board Sandwich: Effective Techniques for PCB Reverse Engineering

Joe Grand (@joe grand) aka Kingpin
Grand Idea Studio, Inc.
PCB Reverse Engineering

• The art of "undesigning" an existing system
• Destructive and non-destructive methods
• Why?
 – Determine system or subsystem functionality
 – Security research/verification
 – Forensic analysis/intelligence
 – Clone a design
 – Inject new (malicious) behavior
• How?
 – Access to copper layers
 – Analyze layout rules/features
 – Trace component interconnections
Deconstruction Techniques

• Solder Mask Removal
• Delayering
• Imaging

* Results of my DARPA CFT Research and Analysis of PCB Deconstruction Techniques project
PCB Construction & Layer Stack

• Layers of thin copper foil (conductive) laminated to insulating (non-conductive) layers
 – "Circuit board sandwich"
• Form the physical carrier and electrical pathways for components
PCB Construction & Layer Stack 2

- **Silkscreen (Component Legend)**
 - Epoxy or printable ink
 - Part designators, symbols/logos, manufacturing/test markings

- **Soldermask**
 - Protects PCB from dust/moisture
 - Provides access to desired copper areas

- **Copper**
 - Thickness = weight of copper/sq. ft.
 - Surface finish provides better solderability

- **Substrate**
 - Insulating layer
 - Rigid and/or flex, fiberglass/epoxy weave or specialized composite
PCB Construction & Layer Stack 3

- Traditional capabilities
 - 3 mil trace/space width
 - 8 mil diameter mechanically-drilled vias
 - Buried vias

- State-of-the art capabilities
 - < 1 mil trace/space width
 - 0.4 mil diameter laser-drilled microvia
 - Via-in-pad

PCB Construction & Layer Stack 4

- Separate layers only tell part (if any) of the story
-Placed together, a complete circuit layout can be identified
-If components are also known, a full electrical design can be reversed
Solder Mask Removal

- Sandpaper/rubbing stone
- Fiberglass scratch brush
- Abrasive sand blasting
- Chemical
- Laser
Solder Mask Removal: Sandpaper/Rubbing Stone

- Effective, lowest cost method
- Even strokes across the entire PCB @ light pressure
- Spare PCBs of same height used on sides to help maintain planar motion
- Different PCB surface finishes require different grit sizes
- Excessive abrasion can cause damage to underlying copper
Solder Mask Removal: Sandpaper/Rubbing Stone 2

60/80 grit rubbing stone + 220 grit sandpaper

iPhone 4 16GB w/ 400 grit sandpaper
Solder Mask Removal: Fiberglass Scratch Brush

- Handheld, pencil-shaped tool for material cleaning/polishing
- Excelta/Eurotool 267
- Very nice result with only light wearing of copper
- Precise control also useful for selective, small area mask removal
- BOLO: Fiberglass shards can/will get stuck in your hands
Solder Mask Removal: Abrasive Sand Blasting

• Typically used to strip material from surfaces (paint, calcium deposits, fungus) or add texture/artificial wear
• TP Tools Skat Blast 1536 Champion Blast Cabinet @ TechShop, San Francisco, CA
• Best results w/ nozzle angled & held 6-8" away from PCB surface
Solder Mask Removal: Abrasive Sand Blasting 2

- 60# aluminum oxide @ 80PSI (pounds/sq in), 10-15 CFM (cubic ft/min)
- Noticeable pitting, but copper and substrate remained intact
 - Softer media (crushed walnut shells) may cause less surface wear
 - Risk of damage by focusing on one area of PCB for too long
- Best suited for PCBs w/ trace/space >= 10/10mil & copper weight >= 1oz (1.4mil)
Solder Mask Removal: Chemical

- Typically used by PCB fabricators for failure analysis or to fix a manufacturing error
- BOLO: Requires hazardous chemical handling and disposal procedures

* Not a meth lab.
Solder Mask Removal: Chemical 2

* Not a meth dealer.
Solder Mask Removal: Chemical 3

• Ristoff C-8 (NWE Chem Research, UK)
• Magnastrip 500 (RBP Chemical Technology, US)
• Neither chemical will attack the PCB substrate/laminate
• Heat chemical, soak PCB, rinse in water & brush lightly w/ soft metal brush
 – Processing time (~45-120 minutes) varies due to chemical temperature, solder mask composition, and solder mask thickness
Solder Mask Removal: Chemical 4

Ristoff C-8 @ 90 minutes, 130°F

Magnastrip 500 @ 75 minutes, 150°F
Solder Mask Removal: Laser

- LPKF MicroLine 600D UV Laser System @ A-Laser, Milpitas, CA
- Typically used for cutting of flex circuits and coverlayer material (film, foil, adhesive)
- +/-0.6 mil accuracy, 300mm/sec. (11.8"/sec.) max. travel speed, 20um (0.787mil) beam diameter
Solder Mask Removal: Laser 2

• Single pass @ medium power
• Copper layer remains fully intact
• Different materials react differently to the laser energy
 – Solder mask and FR4 ablate more quickly than copper
 – Incorrect laser power settings or too many passes can damage underlying copper
Solder Mask Removal: Failures

- Hobby knife
- Electric/mechanical eraser
- Dremel tool
- CNC milling
- Chemical
 - Methylene chloride
 - Tetrahydrofuran
 - Acetone
- Heat
 - Heat gun
 - Butane torch
Delayering

- Sandpaper/rubbing stone
- Dremel tool
- CNC milling
- Surface grinding
Delayering: Sandpaper/Rubbing Stone

- Effective, lowest cost method
- Affix to work surface w/ double-sided tape
- Full strokes across the entire PCB @ hard pressure
 - One layer at a time
- Physical workout -> operator fatigue
Delayering: Sandpaper/Rubbing Stone 2
Delayering: Sandpaper/Rubbing Stone 3

- Minor scratching of inner copper layer
- Noticeable wearing along edges due to uneven sanding

60/80 grit rubbing stone + 220 grit sandpaper
Delayering: Dremel Tool

- Off-the-shelf home improvement tool used for cutting, grinding, drilling, routing, polishing, & sanding
- Dremel MultiPro 395 w/ 503 Flapwheel (120 grit, 3/8" wide)
- Back and forth across the PCB @ medium pressure
Delayering: Dremel Tool 2

- Difficult to keep tool flat against the PCB
 - Dremel 225 flexible shaft will help move the tool's body away from the work surface
- Easy to accidentally remove too much material from the target surface
 - More care/practice required!
Delayering: CNC Milling

• T-Tech QuickCircuit 5000 PCB Prototyping System
 – Z-axis can be manually adjusted in 10um (0.4mil) increments
• Think & Tinker MN208-1250-019F 1/8” diameter carbide endmill
• IsoPro 2.7 for control and manipulation of milling, drilling, and routing procedures
Delayering: CNC Milling 2

- PCBDT Reference Board
- Z-axis depth incrementally adjusted
- Manual jog to mill away the desired area(s)
- Resulting PCB has a stair-step that can be visually identified and felt with a finger
 - Proved that it was possible to access a specific copper layer using CNC
Delayering: CNC Milling 3

- iPhone 4 16GB Logic Board
- Mechanical outline of the desired PCB area created in IsoPro
- Configured to rubout all material internal to that area
 - Allows for accurate, repeatable, and automatic positioning of the milling path
- Z-axis depth adjusted in 1mil increments
- When layer of copper was visible beneath the substrate, switched to manual abrasion using fiberglass scratch brush
- Repeat
Delayering: CNC Milling 4
Delaying: CNC Milling 5

iPhone 4 16GB Logic Board (0.92" x 0.58" area)
Delayering: Surface Grinding

- Typically used for material grinding & surface finishing
- Consists of a rotating abrasive wheel (grinding wheel), work surface, and reciprocating or rotary table (manual or computer control)

http://engineerharry.files.wordpress.com/2012/04/grinder1.png
Delayering: Surface Grinding 2

- Blohm PROFIMAT CNC Creep Feed Surface Grinder w/ Siemens SINUMERIK 810G controller & Radiac 1 3/8”-wide wheel @ General Grinding, Oakland, CA
 - Depth control in 0.1mil increments
- Target PCB mounted to steel block (held in place by magnetic chuck)
Delayering: Surface Grinding 4
Delaying: Failures

• Heat
 – Heat gun
 – Hot knife

• Laser
 – UV/CO2
Imaging

- X-ray (2D)
- Computerized Tomography (3D)
Imaging: X-Ray (2D)

• Typically used during PCB assembly (component placement/solder quality) or failure analysis (troubleshooting defective features)

• X-rays passed through target and received on detector
 – All materials absorb radiation differently depending on density, atomic number, and thickness

• Provides a composite image of all layers in target

http://datest.com/resources-boardtestmeth-primer2d3d.php
Imaging: X-Ray (2D) 2

- Nordson DAGE XD7500VR X-ray Inspection System @ Sonic Manufacturing, Fremont, CA
Imaging: X-Ray (2D) 3

- Can get clues about PCB construction/layout, component location, layer count, hidden/embedded features
- VeriFone PINpad 1000SE active security envelope
Imaging: X-Ray (2D) 4

- For simple boards, can visually follow traces/interconnections
 - Composite image makes it difficult to determine on which layer a particular trace is located
 - Manipulating the X-ray angle and field-of-view in real time will help
Imaging: X-Ray (2D) 5

Emic 2 Text-to-Speech Module
Imaging: X-Ray (3D/CT)

• Computed Tomography (CT)
 – A series of 2D X-ray images post-processed to create cross-sectional slices of the target
 – X-ray beam rotated 360° in a single axis around the target

• Typically used for complex inspection and failure analysis of PCBs, component packaging, solder ball/joint quality

• Acquisition
 – Capture a series of 2D X-ray images (60-720 depending on desired resolution)

• Reconstruction
 – Post-processing results in 2D slices that can be viewed in any plane (X, Y, Z)
 – Can be manipulated with 3D modeling software

http://datest.com/resources-brochures.php
Imaging: X-Ray (3D/CT) 2

- Nordson DAGE XD7600NT Ruby X-ray Inspection System w/ X-Plane option @ Datest, Fremont, CA
Imaging: X-Ray (3D/CT) 3

- Emic 2 Text-to-Speech Module
- 360 2D images taken at a 50° inclination angle
 - One image every 6 seconds
- Imported into VGStudio 2.1 for 3D model manipulation
- Manually moved through Z plane (top to bottom) to identify each layer
 - Could also measure substrate thickness between layers
 - Limited field-of-view will require multiple "segments" to be stitched together if working on a full PCB
- Results may vary based on layer count, inter-layer thickness, copper weight, substrate composition
Imaging: X-Ray (3D/CT) 4
Imaging: X-Ray (3D/CT) 5

Emic 2 Text-to-Speech Module (5/8" x 7/8" area)
Imaging: Failures

- Acoustic Microscopy
<table>
<thead>
<tr>
<th>Technique</th>
<th>Time Required</th>
<th>Cost</th>
<th>Access to Equipment</th>
<th>Ease of Use</th>
<th>Likelihood of Success</th>
<th>Quality of Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solder Mask Removal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandpaper</td>
<td>< 1 hour</td>
<td>$</td>
<td>Easy</td>
<td>Easy</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Fiberglass scratch brush</td>
<td>< 1 hour</td>
<td>$</td>
<td>Easy</td>
<td>Easy</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Abrasive sand blasting</td>
<td>< 1 hour</td>
<td>$$</td>
<td>Moderate</td>
<td>Medium</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Ristoff C-8</td>
<td>3-4 hours</td>
<td>$$</td>
<td>Difficult</td>
<td>Hard</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Magnastrip 500</td>
<td>3-4 hours</td>
<td>$</td>
<td>Difficult</td>
<td>Hard</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Laser</td>
<td>2-3 hours</td>
<td>$$$</td>
<td>Moderate</td>
<td>Hard</td>
<td>Varies</td>
<td>Excellent</td>
</tr>
<tr>
<td>Delaying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandpaper</td>
<td>2-3 hours</td>
<td>$</td>
<td>Easy</td>
<td>Easy</td>
<td>Fair</td>
<td>Excellent</td>
</tr>
<tr>
<td>Dremel tool</td>
<td>< 1 hour</td>
<td>$</td>
<td>Easy</td>
<td>Medium</td>
<td>Poor</td>
<td>Varies</td>
</tr>
<tr>
<td>CNC milling</td>
<td>3-4 hours</td>
<td>$$</td>
<td>Moderate</td>
<td>Hard</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Surface grinding</td>
<td>3-4 hours</td>
<td>$$$</td>
<td>Moderate</td>
<td>Hard</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Imaging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray (2D)</td>
<td>Many</td>
<td>$$$</td>
<td>Moderate</td>
<td>Medium</td>
<td>Poor</td>
<td>Varies</td>
</tr>
<tr>
<td>Computerized Tomography</td>
<td>1-2 hours</td>
<td>$$$</td>
<td>Moderate</td>
<td>Medium</td>
<td>Fair</td>
<td>Excellent</td>
</tr>
</tbody>
</table>
Next Steps

• Test additional delayering techniques
 – Methyl Ethyl Ketone, drum sander

• Development of software toolkit (in progress)
 – Automated/assisted creation of schematic based on PCB layer images
 – Computer vision/image processing routines
 – Open source, cross platform (Python + OpenCV)
 – Ala degate or rompar, but for PCBs

* All documentation, videos, and research available at www.grandideastudio.com/pcbdtt/
The End.